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ABSTRACT 
 
In this paper, a method with sentence-wide optimization 
consideration is proposed to generate a Mandarin sentence's 
pitch-contour. The developed model is called the sentence 
pitch-contour HMM (SPC-HMM) due to its use of VQ 
(vector quantization) and HMM (hidden Markov model). 
To construct an SPC-HMM, the pitch-contours of the 
syllables from each training sentence are normalized on 
both time and pitch-height first. The method for 
pitch-height normalization is effective and newly developed 
here. After normalization, the pitch-contour of each training 
syllable is vector quantized. Then, the quantization code 
and lexical tones of adjacent syllables are combined to 
define the observation symbol sequences for HMM training. 
In the synthesis phase, when given a sentence and its 
relevant text-analysis information, the most probable 
observation sequence is generated by finding the 
sentence-wide largest probability path with a 
dynamic-programming based algorithm. We had conducted 
practical perception tests. It is found that the speech 
synthesized by using the sentence pitch-contour generated 
from out method is slightly better than uttered by an 
ordinary speaker. Besides, the comprehensibility of the 
synthesized speech is also promoted. 
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1.  INTRODUCTION 
 
In general, a TTS (text-to-speech) system is made of three 
main processing components, i.e., text analysis, prosodic 
parameter generation, and signal waveform synthesis [1]. 
When a Chinese sentence is to be synthesized, it is first 
analyzed by the text analysis component to segment it into 
a sequence of words, to set the boundaries of breath groups, 
and to determine the corresponding syllable and tone for 
each of its component characters. Then, the prosodic 
parameters, pitch-contour, duration, amplitude, and pause, 
for each syllable of the sentence are decided by the 
prosodic-parameter generation component. According to 
the given prosodic parameters, the signal waveform 
synthesis component then starts to synthesize clear and 
intelligible speech waveform. 
 
We had studied the problem of signal waveform synthesis 
before [2,3]. A flexible synthesis method, called TIPW, is 
proposed which can eliminate the two important drawbacks, 
chorus and reverberation, found in PSOLA [4]. However, 
the pitch-contours of the syllables comprising a sentence 
play the dominant role for the naturalness level of the 
synthesized speech. Therefore, we decide to study the 
problem of sentence pitch-contour generation. In the past, 
many efforts had been made in studying the generation of 
pitch-contour. For example, The rule-based approach [5], 

the statistical approach [6], and the 
recurrent-neural-network approach [7]. Among the different 
methods, most of them select pitch-contour templates with 
just local optimization consideration. It is therefore 
questioned if a pitch-contour generation method can take 
sentence-wide optimization consideration and is explicitly 
controllable (not like a black box as an artificial neural 
network). With this purpose in mind, we found that a HMM 
(or finite state model) based method is just what we want. 
 
From relevant literature, we know that a syllable at the 
beginning of a sentence is usually uttered with higher pitch 
than that at the end, i.e., the phenomenon of declining. To 
model this phenomenon, three prosodic states representing 
sentence-initial, sentence-middle, and sentence-final, are 
adopted. However, we do not know how to segment a 
sentence’s syllables into these states explicitly. Therefore, 
we imagine these prosodic states are hidden and will 
represent them by the hidden states of a straight left-to-right 
HMM. Besides the influence of prosodic states, the lexical 
tones of a syllable and its adjacent syllables also have 
strong influences. Therefore, we will combine adjacent 
syllables’ lexical tones and pitch-contour VQ code to form 
observations for such a HMM. We do not consider other 
minor factor (e.g., syllable-type and position in a word) 
because we have just a limited number of training sentences. 
This should not confine the extensibility of such model 
framework. Such a HMM based model is called sentence 
pitch-contour HMM (SPC-HMM) because the most 
probable observation sequence is generated, in the 
synthesis phase, by finding the sentence-wide largest 
probability path with a dynamic programming based 
algorithm. For a generated observation sequence, the 
corresponding sequence of syllable pitch-contour VQ code 
can be simply decoded as the inverse of observation symbol 
encoding. 
 
Although HMM has also been adopted by other researchers 
to generate pitch-contours [8,9], however, there are several 
obvious differences. In their studies, the observations of 
HMM represent the consecutive pitch-periods’ lengths (so 
small time-scale), a different HMM is used to model the 
pitch-contours of a different syllable, and more importantly 
sentence-wide phenomenon such as declination is not 
considered. In contrast to their studies, only one HMM is 
constructed here for all sentences, and the observations of 
the HMM are the combination of pitch-contour VQ code 
and lexical tones, i.e., the time-scale is as large as a syllable. 
More importantly, SPC-HMM has sentence-wide 
phenomenon covered. 
 
In the training phase of SPC-HMM, the main processing 
flow is as shown in Fig. 1 whereas in the synthesis phase, 
the main processing flow is as shown in Fig. 2. In Section 2, 
the functions of the blocks in Fig. 1 will be described. Then, 
the functions of the blocks in Fig. 2 will be explained in 
Section 3. In Section 4, SPC-HMM is evaluated by 
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Fig. 1  Main flowchart for the training phase 

 

Observation
Symbol Encoding

Chinese Sentence

Dynam. Progrm.
Best-Path Finding

SPC-HMM
Model

Parameters

Pitch-Contour
Code Decoding

Syllable
Pitch-Contour
Freq. Vector

 
Fig. 2  Main flowchart for the synthesis phase 

 
 

2. TRAINING PHASE 
 
2.1 Time and Pitch Normalization 
 
We decide to represent a syllable pitch-contour as a vector 
of 16 frequency heights (in Hz) computed at 16 normalized 
(i.e., equal spacing) time points over a syllable’s voiced 
part. If a time point is located between two adjacent pitch 
periods’ center points, its corresponding frequency height is 
then computed as the inverse of the weighting sum of the 
two pitch periods’ lengths.  
 
Pitch height normalization is needed because the training 
sentences are usually recorded in many days with different 
emotions, and have large variations among the sentences’ 
average pitch heights. If normalization is not done, 
abnormal pitch-contour transition between two adjacent 
syllables will be often heard in the synthesized speech. 
Here, an effective normalization method is proposed, with 
which only one utterance is required for each training 
sentence. The procedure for this method is: 
(a) For the i’th training sentence, compute its j’th syllable’s 

average pitch-height Ej in logarithmic scale. That is, 
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where fjk is the frequency height at the normalized time 
point k. Then, compute this sentence’s average 
pitch-height Si as 
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where n represents the number of syllables in this 
training sentence. 

(b) Compute the grant average pitch-height, Sa, across all 
training sentences. That is, 
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where St represents the number of training sentences. 
(c) Compute the pitch-height adjusting value, iδ , for the 

i’th training sentence as 
    iδ  = Si – Sa  (4) 
(d) According to iδ , normalize the pitch contour of the 

j’th syllable of the i’th training sentence as 
   jkp  = jkp  − iδ ,  k=0,1, ..., 15,  j=1,2, ..., n (5) 

 
Although the method explained above seems simple, it can 
indeed eliminate most abnormal pitch-contour transitions 
between syllables. To further eliminate unacceptable 
pitch-contour transitions, we have studied another sentence 
pitch-height normalization method. This method is applied 
to the resultant pitch-contours obtained from the prior 
normalization method. The procedure for this method is: 
(a) Uniformly divide each training sentence into three 

segments. Collect the syllables, from all training 
sentences, which are divided to the first segment. Then, 
compute the mean pitch-height, M0,k, of these syllables 
that are pronounced in the k’th lexical tone. Similarly, 
the mean pitch-height, M1,k and M2,k , for those 
syllables divided to the second and third segments can 
be computed also. 

(b) For the i’th training sentence, compute its j’th syllable’s 
pitch-height difference dj. Then, compute the mean 

difference d  for this sentence. That is, 
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where Ej is the renewed pitch-height from the prior 
normalization method, l is the segment number that the 
j’th syllable is divided to, k is the tone number that the 
j’th syllable is pronounced, and n is the number of 
syllables in the i’th training sentence. 

(c) According to the mean difference d , normalize the 
pitch-contour of the j’th syllable as 

     21   1510      ,,..,,,,...,,, njkdpp jkjk ==−=  (8) 

where jkp , k=0,1, …, 15, is the j’th syllable’s pitch- 

contour obtained from the prior normalization method. 
 
In pitch-contour codebook training, three conditions, no 
pitch height normalization, normalization using the first 
method, and normalization using the two methods above, 
are tested. The average VQ errors obtained are, 0.0398, 
0.0330, and 0.0308 (about 3.7Hz at 120Hz) respectively, 



i.e., VQ error will become smaller as more normalization 
methods are used. 
 
2.2 Vector Quantization 
 
After time and pitch height normalization, the training 
syllables’ pitch-contour vectors are classified according to 
their lexical tones. Then, for each lexical tone, we use GLA 
(Generalized Lloyd Algorithm) to perform VQ codebook 
training [10]. Apparently, the average quantization error 
will become smaller when the codebook size become larger. 
However, this is not always good because larger codebook 
size will result in larger observation space for SPC-HMM, 
and larger observation space means coarser HMM 
parameter estimation. That is, a tradeoff should be made. 
Here, we set each lexical tone’s codebook size to be 8 
according to preliminary experiment results. 
 
2.3 Observation Symbol Encoding 
 
The lexical tones of three adjacent syllables are combined 
with the pitch-contour VQ code of the middle syllable to 
define its corresponding discrete observation. That is, an 
observation at time t is defined as 
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where Xt represents the lexical tone number of the t’th 
syllable in a training sentence and Vt represents the VQ 
code of the t’th syllable’s pitch-contour. When t=1, Xt-1 is 
undefined and is therefore removed, and Ot is defined in 
the range, 1,000 ≤ Xt × Xt+1 × Vt < 1,200. Similarly, when t 
represents the last syllable, Ot is defined in the range, 1,200 
≤ Xt-1 × Xt × Vt < 1,400.  
 
Besides, consider the condition that some three-lexical-tone 
combinations seen in the synthesis phase may not be seen 
in the training phase due to insufficient training sentences. 
We resolve this difficulty by building two simplified 
SPC-HMM, in which observations are defined as fewer 
factors’ combinations. That is,  
   tttt VXXO ××≡ +1  (10) 
   tttt VXXO ××≡ −1  (11) 
for the first level and the second level downgrades and have 
values in the two ranges, 1,400 to 1,599 and 1,600 to 1,799 
respectively. Then, when an observation is not seen in the 
training phase, its occurrence probability is looked up from 
the corresponding observation in the downgraded 
SPC-HMM but divided by a constant (e.g., 100,000) to 
avoid model biasing. 
 
2.4 SPC-HMM Training 
 
The parameters, aij and bj(k), of the original and the two 
downgraded SPC-HMM can be trained independently since 
no downgrading occurs in the training phase. The 
segmental K-means algorithm is used here [10]. About the 
insufficiency of training sentences (375 sentences of 2,925 
syllables), we have adopted a sharing method. That is, 
when an observation is seen, 0.0001 of its occurrence is 
shared to the nearest observation that has same lexical tone 
combination but differs in pitch-contour VQ code.  
 
In original HMM, observations generated from a same state 
are assumed to be mutually independent. However, in a 
Mandarin sentence, adjacent syllables’ pitch-contours have 

at least some degree of dependence. Therefore, we add a 
new parameter, cj(k), to record the average pitch-height 
difference between the former two syllables’ pitch-contours, 
whose lexical tone are combined to obtain observation k in 
state j. For the t’th syllable of a sentence, the pitch-height 
difference, Wt, is defined as 
   Wt = WFt – WBt-1  (12) 
where WFt represent the front-pitch-height for the t’th 
syllable and WBt-1 represent the back-pitch-height for the 
(t-1)’th syllable. That is, 
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where pt,j represents the logarithmic frequency at the j’th 
normalized time point of the t’th syllable. When this cj(k) 
parameter is included, with equal weight to bj(k), into 
SPC-HMM, the average root-mean-square prediction error 
for a syllable’s pitch-contour can be improved about 5%.  
 

3. PITCH-CONTOUR GENERATION 
 
In the synthesis phase, a given Chinese sentence is 
analyzed by text-analysis component first to derive its 
pronunciation syllable sequence. Then, every three adjacent 
syllables’ lexical tones are combined to select the eight 
(eight codewords in each tone’s pitch-contour codebook) 
possible observations for every time position. So, in 
addition to the time and state axes, the third axis, i.e., index 
to the eight possible observations, should also be 
considered. Here, we have extended the commonly used 
two-dimensional dynamic programming (DP) algorithm (or 
called Viterbi algorithm) to solve this three-dimensional DP 
problem. Therefore, a probabilistically best observation 
sequence can be found for a given lexical tone sequence. 
Then, the pitch-contour VQ code sequence is decoded from 
the best observation sequence, and each VQ code can be 
used to retrieve its correspondent time-and-pitch 
normalized frequency vector. 
 
Note that structural prosodic information such as 
breath-breaks and word-boundaries are not used in the 
training and synthesis phases. The sentence pitch contour 
generated under this condition is called Mode-A generation, 
and may not be satisfactory for a long sentence. Therefore, 
we had studied another SPC-HMM based pitch contour 
generation method, called Mode-B generation method. In 
this method, the breath-break and word-boundary 
information from text-analysis component is used to set the 
state transition sequence in SPC-HMM. Although the state 
transition sequence is now fixed, the determination of 
pitch-contour VQ code for each syllable is still a two 
dimensional DP problem. For example, suppose there is a 
breath-break between the third and forth syllables of a 
sentence consisting of seven syllables. Then, the state 
transition sequence is set to 0,1,2, 1, 1, 2, 2 (the transition 
from state 2 to 1 is allowed here in the synthesis phase). In 
the first breath group, the syllables are uniformly divided to 
the three states while the syllables in the second and latter 
groups are uniformly divided to the states 1 and 2. As to the 
word boundary information, it is used to modify the state 
setting such that the two syllables of a two-character word 
are placed at a same state. Also, it must be satisfied that the 
last syllable of the first group must be placed at state 1 or 2 
while the last syllables of the other groups must be placed 
at state 2 to form a wave-like state transition. With this 
integration of structural prosodic information, the 



naturalness level of the generated sentence pitch contour 
has been improved a lot. 
 

4. PERCEPTION TEST 
 
Eighteen persons were invited to evaluate the SPC-HMM 
based sentence pitch-contour generation methods. In the 
evaluation of comprehensibility, 15 different sentences are 
divided into 3 sets with roughly equal difficulty. Each set is 
assigned to one of the 3 test conditions, i.e., sentence 
pitch-contour generation with simple rules (i.e., previous 
version), with SPC-HMM based Mode-A method, and with 
SPC-HMM based Mode-B method. Then, for each person, 
the three test conditions are randomly permutated and the 
sentences assigned to each condition are synthesized. After 
listening to each synthesized sentence, the invited person is 
requested to write down the Chinese sentence he heard. The 
comprehensibility is defined here as the average ratio of 
correctly written characters over total characters. 
 
In the evaluation of prosody-preference score, the speech 
uttered by the second author is defined as having 8 points 
while the perfect prosody has 10 points. For each person, 
the speech (reading an article) uttered by the second author 
is played first, then the speech synthesized under the 3 test 
conditions are played respectively. The invited person is 
requested to write down his prosody-preference score for 
each condition. The evaluation results are as shown in 
Table 1. From this table, it can be seen that the 

comprehensibility has been promoted from 81.2% for the 
previous version to more than 95% when using SPC-HMM 
based generation methods. Besides, it is surprising that the 
speech synthesized by using the SPC-HMM Mode-B 
generation method is evaluated to have preference score of 
8.2 points, which is slightly higher than the speech uttered 
by the second author. Also, this score, 8.2, is apparently 
higher than the scores for the speech synthesized by using 
simple rules and the SPC-HMM based Mode-A method.  
 
For those interested in evaluating the SPC-HMM based 
sentence pitch-contour generation method, we had set up a 
WWW home page at http://guhy.ee.ntust.edu.tw/gutts, on 
which an on-line inputted Big-5 Chinese sentence is 
synthesized immediately and its speech signal is then sent 
back for evaluation. 
 

5. CONCLUSION 
 
In this paper, we had studied and proposed a sentence 
pitch-contour (SPC) generation model using HMM to 
model implicit prosodic states and VQ to classify each 
lexical tone’s syllable pitch-contours into 8 classes. This 
model is called SPC-HMM because in the generation of 
sentence pitch-contour, sentence-wide optimization 
consideration is taken into account, i.e., find the most 
probably syllable pitch-contour sequence by dynamic 
programming. In addition, we had proposed an effective 
pitch-height normalization method. By this normalization 
method, abnormal pitch-contour transitions between 
syllables can be nearly removed from the synthesized 
speech. 

 
Although the structural prosodic information, breath breaks 
and word boundaries, are not used in training SPC-HMM, 
these information can still be utilized in the synthesis phase 
to set the state transition sequence, i.e. SPC-HMM based 
Mode-B generation method. The perception evaluations 
show that Mode-B generation method can indeed obtain 
prosodic-preference score slightly better than uttered by an 
ordinary person. It is a good idea to integrate the structural 
prosodic information directly into the model, SPC-HMM, 
but how to implement this idea needs to be studied. 
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Table 1  Perception evaluation results. 
 Simple rules Mode-A Mode-B

Comprehensibility 81.2% 95.1% 96.5%
Preference-Score 5.1 7.0 8.2 


