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Abstract—Approximating spectral envelope with regularized
discrete-cepstrum coefficients was proposed by previous
researchers. In this paper, we study two problems encountered in
practice when adopting this approach. The first is which spectral
peaks should be selected, and the second is what frequency axis
scaling function should be adopted. After some efforts of trying
and experiments, we propose two feasible solution methods for
these two problems. Then, we combine these solution methods
with the method for regularizing and computing discrete
cepstrum coefficients to form a spectral-envelope estimation
scheme. This scheme has been verified, by measuring spectral-
envelope approximation error, to be much better than the
original scheme. In addition, we have applied this scheme to build
a voice-timbre transformation system. This system demonstrates
that the proposed estimation scheme is very effective.
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L INTRODUCTION

Here, a spectral envelope is meant a magnitude-spectrum
envelope. Some methods for estimating a spectral envelope had
been proposed previously. For example, in LPC based methods
[1, 2], the frequency response of an all-pole model is used to
approximate the spectral envelope of a speech frame.
Nevertheless, the frequency response curve of an all-pole
model is usually not accurate enough. Besides LPC, a cepstrum
based method for estimating a spectral envelope was proposed
by Imai and Abe [3, 4]. They call this method, true envelope
estimation. As our opinion, this method is good but lack
efficiency because a lot of computations are required. Similarly,
the method, STRAIGHT, proposed by Kawahara, et al. [5], is
very accurate in its estimated spectral envelope. Nevertheless,
it also requires a large amount of computations and cannot be
used to implement real-time systems currently. On the other
hand, Galas and Rodet proposed the concept of discrete
cepstrum [6], and designed a feasible estimation method with
this concept. Later, Cappé and Moulines improve this
estimation method by adding a regularization technique to
prevent unstable vibrating of envelope curve from occurring [7].
We think that estimating a spectral envelope with discrete
cepstrum is a good approach if the feasibility and accuracy
issues must be considered simultaneously. Therefore, we began
to study the problems that will be encountered in practice.

As an overview, the spectral envelope estimation scheme
proposed here is shown in Fig. 1. When a speech frame is
given, its fundamental frequency is first detected in the first
block. If a frame is decided to be voiced, its estimated

fundamental frequency will be used latter in the block,
“spectral peaks selection”. Here, a method combining
autocorrelation function and AMDF is adopted to detect a
frame’s fundamental frequency [l, 8]. Next, the frame is
Hanning windowed, and appended with zeros to form a signal
segment of 1,024 samples. This segment is then transformed to
frequency domain with FFT to obtain its magnitude spectrum.
Then, this magnitude spectrum is inputted to the block
“spectral peaks selection” to select spectral peaks according to
a method proposed here. After spectral peaks are selected, the
frequency value of each selected peak is mapped to its target
value with a frequency-axis scaling function proposed here. As
the final step, the block “discrete cepstrum computation”
adopts an envelope-approximation criterion [7] to compute
discrete cepstrum coefficients (DCCs) according to the selected
and mapped spectral peaks.

fundamental .
speech Hanning
frequency —» . . » FFT
frame . windowing
detection
A\ 4
spectral discrete frequ@ncy spectral
cepstrum  [¢— axis [— peak
envelope . . .
computation scaling selection

Fig. 1. Main flow of the spectral-envelope estimation scheme.

In Fig. 1, discrete-cepstrum computation is the major block,
and it is already solved by other researchers [7]. Nevertheless,
the blocks, spectral-peak selection and frequency-axis scaling,
still play important roles. When inappropriate peaks are
selected or frequency-axis is not scaled appropriately, the
approximated spectral envelope will noticeably deviate from
the true envelope. Therefore, we studied these two blocks’
problems here, and the results are presented in Section 3 and 4,
respectively. As to discrete cepstrum, its computation and
regularization will be briefly reviewed in Section 2. In Section
5, the proposed scheme is practically verified by applying the
scheme to build a voice timbre transformation system.

II. DISCRETE CEPSTRUM BASED SPECTRAL ENVELOPE

A. Discrete Cepstrum

To obtained cepstrum coefficients cg, ¢y, ..., cy.1, Where N
is the length of a signal frame, the conventional method is to
transform the logarithmic magnitude-spectrum, log|X(k)|, with



inverse DFT (IDFT). Then, the logarithmic magnitude-
spectrum can be computed with the cepstrum coefficients as
Ny
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0<k<N-1.

If most terms at the right side of (1) are cancelled except the
leading p+1 terms, the magnitude spectrum computed, log S(f),
would be a smoothed version of the original, log|X(f)|. Here, the
index variable, £, in (1) is replaced with f'in order to change the
frequency scale from bins to the normalized frequency range
from 0 to 1. Accordingly, log S(f) is computed as
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Based on (2), some researchers proposed to approximate the
spectral envelope of loglX(f)| with log S(f). Nevertheless, the
coefficients, c¢,, in (2) cannot be derived directly with IDFT.
One derivation method proposed by Galas and Rodet is to
define a set of envelope constraints, and find the values of the
coefficients, ¢, that can best satisfy the envelope constraints. In
this manner, the derived coefficients, ¢,, n=0, 1, ..., p, are
called the discrete cepstrum for log|X(f).

The envelope constraints just mentioned are actually L pairs
of (f, ay) for L representative spectral peaks selected from the
original spectrum log|X(f)]. Here, f; and a, represent the
frequency (already normalized to between 0 and 1) and
amplitude of the k-th spectral peak, respectively. Note that L is
usually larger than the cepstrum order, p. Hence, a least-
squares criterion is adopted to minimize the approximation
errors between S(f;) and ay, k=1, 2, ..., L. In matrix form, the
optimal values of the DCCs is derived by previous researchers
[6, 7] to be

C=M"-M)"M"-4 (3)
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B.  Regularization of Discrete Cepstrum

When (3) is used to derived DCCs, the spectral envelope
computed according to (2) may vibrate radically and have very
large approximation error at some frequencies slightly away the
selected spectral-peak frequencies, f;. This is because the direct
estimation method (i.e. Eq. (3)) may sometimes be ill-
conditioned. That is, slightly varying the frequency values of
the detected spectral peaks may result in a very different
spectral envelope curve being obtained. Therefore, Cappé and
Moulines proposed a regularization technique to prevent such
radical vibrations from occurring [7]. They add a curve-
sharpness penalty term, i.e.

R(S()= jo"L;S(f)} . ()

to the approximation error calculation equation, and the
resulted equation for deriving DCCs becomes

C=(M"M + 2U)"'M"4 . (5)

where A is a weighting parameter (suggested value is around
0.0001), and
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III.  SELECTION OF SPECTRAL PEAKS

DCCs are derived by minimizing the summation of squared
errors between the selected spectral peaks, a;, k=1, 2, ..., L, and
S(f). Therefore, selecting appropriate spectral peaks from a
DFT spectrum is an important preprocessing step. Consider a
simplest selection method, i.e. locate and select all the spectral
peaks on the spectrum as the final selected peaks. In this case,
the approximated spectral envelope would be very bad and of
large approximation error. When such bad spectral envelopes
are used to transform voice signals, the output obtained will
suffer significant voice-quality degradation.

Therefore, we studied this problem and found that the
concept of MVF (maximum voiced frequency) proposed in
HNM (harmonic-plus-noise model) [9, 10] is utilizable. The
MVF of a DFT spectrum is searched by testing the sharpness of
the spectral peaks one after another. After some low-frequency
spectral peaks pass the test, it will eventually occur that no
more spectral peak can pass the test. Then, the frequency of the
last spectral peak passing the test is defined to be the MVF. In
this paper, we first detect if a signal frame is voiced or
unvoiced. If it is detected to be voiced, the frame is further
searched for the MVF value, fv, by using the searching method
proposed by Stylianou [10]. According to fv, the DFT spectrum
of the frame is split into the lower-frequency harmonic part and
the higher-frequency noise part. Then, for the harmonic part,
the first spectral peak of a frequency within the range (0.5xF,
1.5xFy), where Fj is the detected fundamental frequency, is
searched for. Let the obtained frequency and amplitude be f;
and a,. Next, the second spectral peak of a frequency within the
range (f11+0.5xFy, fi+1.5xF,) is searched for, and let the results
be £, (frequency) and a, (amplitude). When going on in this
manner, we can find the frequencies and amplitudes of the
other spectral peaks within the harmonic part. Sometimes, it
may occur that no spectral peak is found within a designated
frequency range. In this situation, we will right shift the
frequency range, i.e. adding 0.5xF, and try to find again.

For the noise part of a voiced frame, the searching method
explained above for the harmonic part cannot be adopted. Note
that the harmonic structure becomes obscure in the noise part,
and the frequency gaps between adjacent peaks become
randomly varied. For an example, inspect the DFT spectrum
curve beyond 5,800Hz in Fig. 2. Therefore, we adopt another
method to find the spectral peaks for the noise part. In this
method, a smoothed spectral curve is computed first by
truncating the real-cepstrum coefficients outside the leading 30
ones, and transforming (via DFT) the resulted real-cepstrum



sequence back to the spectrum domain. Then, each spectral
speak within the noise part of log|X(f)| is located and checked
again its amplitude. It will be selected if its amplitude is higher
than the height of the smoothed spectral curve at the peak’s
frequency. As for an unvoiced frame, the method just explained
can still be applied. This is because such frame’s MVF can be
directly set to OHz, i.e. its spectrum is viewed as all in the noise
part. When applying the spectral peak selecting method
explained above, we may obtain a typical result as shown in
Fig. 2. In this figure, each occurrence of plus-sign, +,
represents a selected spectral peak.
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Fig. 2. A typical result for spectral peak selection.

IV. FREQUENCY AXIS SCALING

A.  Frequency-scale Conversion

By using larger order number, e.g. 40, the global
approximation error of a frame’s spectral envelope can be
under control. Nevertheless, local approximation errors that are
large enough and cannot be ignored may still be found. For
example, the spectral envelope in Fig. 3 is obtained by
approximating with 40 DCCs, and has two significant local
approximation errors as circled.
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Fig. 3. Envelope approximated with 40 DCCs in linear freq. scale.

Consider the local approximation error around 1,000Hz as
seen in Fig. 3. From the DFT spectrum, it is known the
fundamental frequency is low and the frequency gap between
two adjacent spectral peaks is small. Under such situation, the
amplitudes of the third and fifth spectral peaks show rapidly
growing higher than the nearby peaks. Such rapid change of
spectral envelope is very hard to approximate. To solve this
situation, a conventional idea is to nonlinearly scale the
frequency axis to enlarge the frequency gaps between lower-

frequency spectral peaks. Therefore, when a spectral peak of a
frequency f; is detected, its frequency value will be scaled to

f, according to the formula,

ol :l.SCl(kaF;) (7)
2 scl(05xF)

where scl(-) represents a frequency-scale conversion function
and F; is the sampling frequency. After frequency scaling, the
spectral peaks’ frequencies and amplitudes are then took into (5)

to compute the optimal DCCs. The step of replacing f; with f %

also implies that the computed DCCs must be used in the
scaled frequency axis instead of the original axis. That is, for a
linear frequency f, its envelope magnitude, S(f), should be

computed by scaling f'into f . first and then taking fk into (2).

For nonlinear frequency-axis scaling, mel and Bark
frequency scales are the most famous ones [1]. If the
frequency-scale conversion function, sc/(-), adopted is a mel-
frequency conversion, the spectral envelope shown in Fig. 3
will be changed to the one shown in Fig. 4. The major
difference is that the lower-frequency spectral peaks in Fig. 4
are now all passed by the approximated spectral envelope curve.
Nevertheless, the local approximation error around 3,000Hz is
still noticeable. In addition, the spectral envelope curve in Fig.
4 shows much stronger vibration near the lower-frequency end
than the one in Fig. 3. This phenomenon of over vibration is
thought to be due to the mel-frequency conversion that widens
the frequency-scale at the low frequency end. According to the
observed strong vibration for mel-frequency conversion, we
think much stronger vibration will occur if we adopt the Bark-
frequency conversion for sc/(-). This is because Bark-frequency
conversion will have the frequency-scale at the low frequency
end being widen more than that widened by the mel-frequency
conversion.

120 [ 7 —
\ Discrete Cepstrum —— — — —
100 \ .
r} iy
@so | ) il -
= i y /f NN i
g v
= .
= 60 W\/\f
f=>]
O
=
40 i
20 | .
o : ‘ s
o 2000 4000 6000

Frequency (H=)
Fig. 4. Envelope approximated in mel freq. scale with 40 DCCs.

B.  New Frequency Conversion Function

Therefore, we were motivated to design a frequency
conversion function in the hope to eliminate the phenomenon
of over vibration at the low frequency end and to reduce the
local approximation error around 3,000Hz. After several times
of trying function design and inspecting the approximated
spectral envelope curves, we finally found a better frequency
conversion function,



scl(f) = log(l+1,7% , (®)

where f'is in the unit Hz. This conversion function will have the
scaled frequency value, f, growing more slowly with f"at the

low frequency end when it is used as the sc/(-) function for (7).

The three curves shown in Fig. 5 are obtained by taking
Bark, mel, and our frequency conversions as the sc/(-) function
for (7), respectively. From Fig. 5, it can be seen that our
frequency conversion as given in (8) can indeed grow the

scaled frequency f more slowly with the linear frequency f.

By using the frequency conversion function of (8), the
approximated spectral envelope in Fig. 3 will become the one
drawn in Fig. 6. According to the spectral envelope in Fig. 6, it
can be said that the frequency conversion function proposed
can indeed eliminate the over vibration phenomenon at the low
frequency end, and reduce the local approximation error around
3,000Hz. The reducing of the local approximation error we
think is due to the increased vibrating capability around
3,000Hz by using the proposed frequency conversion instead of
the mel-frequency conversion.
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Fig. 5. Three curves of scaled frequencies by using Bark, mel, and our
frequency conversion functions, respectively.
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C. Approximation Error Comparsion

It may be queried whether our frequency conversion
function is just better than mel-frequency conversion for certain
signal frames. Therefore, we decide to compare the
approximation errors of the two frequency conversions in the
three frequency ranges, i.e. 0 ~ 2,000Hz, 0 ~ 4,000Hz, and 0 ~
6,000Hz. Here, approximation error is measured with the
formula,

I w1 1
Es :EZ,:O { P

L0 20-log,, a; —20-log,, S(1. f; )} ©)

where Nr is the total number of signal frames, and L(¥) is the
number of spectral peaks, for the #-th frame, dynamically
determined to ensure that only the spectral peaks of frequencies
within the currently concerned frequency range are counted.
Here, 375 Mandarin sentences consisting of 2,925 syllables
recorded from a male are used as the testing speech. After all
frames of the testing speech are processed, the approximation
errors measured in different frequency ranges and different
discrete cepstrum orders are illustrated in Fig. 7.

Inspecting the error curve in Fig. 7, it can be seen that
across the cepstrum-order numbers from 30 to 50, our
frequency conversion and the mel-frequency conversion have
almost same approximation errors in the frequency range, 0 ~
2,000Hz. Nevertheless, in the other two frequency ranges, our
conversion function will apparently obtains smaller
approximation errors for different cepstrum-order numbers.
This decreasing of approximation error becomes more apparent
as the frequency range becomes wider.
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Fig. 7. Approximation errors measured for our frequency conversion
and mel-frequency conversion in the three frequency ranges.

V. AN EXAMPLE APPLICATION: TIMBRE TRANSFORMATION

Here, voice transformation is meant to change the timbre of
an input voice to a different timbre. For example, change the



timbre of a female adult into the timbre of a male adult or a
child. In the past, phase vocoder is a frequently used technique
to transform voice timbre [11]. Nevertheless, the basic
transformation method of phase vocoder cannot support
independent control of spectral-envelope scaling and pitch
shifting. Therefore, we based on the proposed spectral envelope
estimation scheme to study and implement a voice
transformation system. This system’s main processing flow is
as shown in Fig. 8. In this system, the inputted voice is first
slicing into a sequence of frames. The frame width is 512
sample points (23.2ms) and the frame shift is 256 points
(11.6ms) under the sampling frequency, 22,050Hz. For each
frame, the processing flow shown in Fig. 1 is executed to
estimate its spectral envelope with 40 DCCs. Then, the
estimated spectral envelope is used to do spectral-envelope
scaling and pitch shifting. Next, the signal model of HNM is
used to re-synthesize speech signals. About the processing
speed of this system, we had tested it on a notebook computer
with Intel T5600 1.83GHz CPU, and found that in average it
will consume 0.75 sec. of CPU time to transform 1 sec. of

voice signal.
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Fig. 8. Main processing flow of the voice transformation system..

To evaluate the performance of the voice-timbre
transformation system, 3 sentence utterances were recorded
from a male and a female, respectively. Then, the female’s
utterances were transformed to obtain a male’s timbre.
Similarly, the male’s utterances were transformed to obtain a
female’s timbre. The source voices and their transformed
voices can be downloaded from the web page,
http://guhy.csie.ntust.edu.tw/dcc/vt.html. Thirteen persons are
invited to listen to the source and transformed sentences for
evaluating timbre recognizability. That is, each participant was
asked how close the timbre of a played voice is like a female
(or a male), and requested to give a score between 1 and 5. As a
result, the average scores obtained are 4.84 for the source
voices and 4.60 for the transformed voices. Therefore, the
transformed voices from our system have sufficiently high
timbre-recognizability.

VI. CONCLUDING REMARKS

There are three problems that must be solved for practically
implementing a discrete-cepstrum based spectral envelope
estimation scheme. The first problem is the regularization of
the discrete cepstrum coefficients. This problem was already
solved by previous researchers. In this paper, we had tried to
solve the other two problems, i.e. selecting appropriate spectral
speaks and finding a better frequency conversion function. For
selecting spectral peaks, we apply the concept of HNM to
divide a spectrum into lower-frequency harmonic part and
higher- frequency noise part. Then, find the spectral peaks in

the harmonic part according to the detected pitch frequency,
and screen the spectral peaks in the noise part according to a
real-cepstrum smoothed spectral curve. As to the problem of
frequency axis scaling, we found that the spectral envelope
approximated by using the mel or Bark-frequency conversion
still has noticeable local approximation errors. Therefore, we
propose a better frequency conversion function that can reduce
the local approximation errors significantly. Then, applying the
solutions to the three problems, we construct a spectral
envelope estimation scheme.

To verify the proposed spectral envelope estimation scheme,
we had built a voice-timbre transformation system. This system
transforms an input voice into an output voice that is of a very
different timbre, i.e. the felt gender and age of the voice can
both be changed. After perception tests, the average scores
from 13 participants show that our system can indeed achieve
the function of voice-timbre transformation.
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