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In this paper, a method is proposed to generate pitch-contours for Mandarin speech
synthesis. In this method, an HMM (hidden Markov model) is used to model the pro-
sodic states implicitly stayed and a syllable’s pitch-contour is treated as an observation
generated from a prosodic state. Such an HMM is called a syllable pitch-contour HMM
(SPC-HMM). For training the SPC-HMM, we developed a feasible method to normalize
a pitch-contour’s height. After normalization, each training syllable’s pitch-contour is
vector quantized and represented with a VQ (vector quantization) code. Then, the VQ
code and its adjacent syllables’ lexical tones are combined to define an observation 
symbol for training the SPC-HMM. In the synthesis phase, a sentence-wide most prob-
able observation symbol sequence is searched on the SPC-HMM using a dynamic pro-
gramming algorithm proposed here. Then, the observation symbol found for a syllable is
decoded to obtain its pitch-contour VQ code. We conducted testing experiments to de-
termine the size of a pitch-contour codebook and the number of states for an SPC-HMM.
The results indicate that setting the codebook size to eight and using six states are the
best choices. Also, we conducted perception tests to compare the naturalness levels of
synthetic speech files. The results show that the two generation modes for operating an
SPC-HMM studied here are comparable to each other in naturalness level.

Keywords: speech synthesis, pitch contour, pitch normalization, hidden Markov model,
vector quantization

1. INTRODUCTION

A Mandarin TTS (text-to-speech) system is conventionally decomposed into three
main processing components, i.e., text analysis, prosodic parameter generation, and signal
waveform synthesis [1]. When a Chinese sentence is input, it will first be analyzed by the
text analysis component to determine its corresponding sequence of syllables and lexical
tones. Note that Mandarin is a tonal language, and a tone shape (e.g., falling, rising, or
leveling) superimposed on a syllable carries lexical information. After textual analysis,
the prosodic parameters, pitch-contour, duration, amplitude, and pre-pause for each syl-
lable are decided by the prosodic-parameter generation component. According to the
generated prosodic parameters, the signal synthesis component is then invoked to synthe-
size speech signals. Recently, the component of prosodic parameter generation was par-
alleled with a newly added component, spectrum-progression parameter generation [2].
Furthermore, other researchers not only have modeled spectrum progression with an
HMM but also have integrated the function of prosodic parameter generation into an ex-
tended HMM [3]. Nevertheless, it is not known whether modeling both spectrum pro-
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gression and prosodic parameter generation simultaneously with an extended HMM is the
best choice.

In previous studies, we have proposed two signal synthesis methods, TIPW [4] and
HNMES [5]. TIPW (time proportioned interpolation of pitch waveform) is a time-domain
method that can reduce the drawbacks, chorus and reverberation, found in PSOLA [6]. In
contrast, HNMES (HNM extended scheme) is a frequency-domain HNM (har-
monic-plus-noise model) [7] based and extended method that can synthesize speech sig-
nals with higher clarity than TIPW or PSOLA. Nevertheless, the naturalness level of
synthetic speech is dominantly determined by the generated pitch-contours. Therefore,
many researchers have spent effort to study the generation of pitch-contours.

Intonation models for pitch-contour generation were previously classified into two
categories, i.e. tone sequence models and superposition models [8]. Among the two, the
concept of superposition has been much more influential for later studies on generating
Mandarin syllables’ pitch-contours with a representative superposition model being the
Fujisaki model [9]. Recently, several methods have been proposed to generate Mandarin
syllables’pitch-contours. One of them is the use of concatenation rules [10]. Another two
methods are based on regression analysis [11] and regression trees [12]. Also, artificial
neural network based methods have been proposed [13, 14]. Finally, another notable sta-
tistical method is the one proposed by Lai [15].

Besides the methods mentioned, HMM (hidden Markov model) based methods have
also been proposed to generate pitch-contours [3, 16, 17]. The method proposed by
Ljolje and Fallside [16], however, only considered the generation of a pitch-contour for
an isolated syllable, and the states of the HMM built for a particular tone are transited
frame by frame. Although the method proposed by Fukada, et al. [17] can generate a
pitch-contour for each comprising syllable of a sentence, their HMMs are actually built
for context dependent phones and the states of an HMM are still transited frame by frame.
In the more recent study by Tokuda, et al. [3], a context dependent phone’s pitch contour 
is generated using just its corresponding HMM states’ pitch statistics, and its adjacent 
phones’ pitch information is not considered and used. Therefore, in those methods,
pitch-contours are generated with just local (within a phone or syllable) optimization
consideration without the sentence-wide global concept of prosodic states. Consequently,
we were motivated to consider a different HMM based pitch-contour generation method
that will take sentence-wide optimization into account and will adopt syllable instead of
signal-frame as the time unit for state transition [18].

As mentioned in [19], a syllable at the start of a sentence is usually uttered with
higher pitch than one at the end, i.e., the phenomenon of declining. Considering this phe-
nomenon, we imagine that there are three prosodic states that occupy sentence-initial,
sentence-middle, and sentence-final parts respectively. Nevertheless, we do not know
how to assign a sentence’s syllables to these states explicitly. Therefore, these prosodic 
states are treated as the hidden states of an HMM, and the transitions between the pro-
sodic states are restricted to have a left-to-right structure [19, 20]. Besides the influence
of a syllable’s stayed prosodic state, the lexical tone of the syllable and the lexical tones 
of its adjacent syllables have considerable influence on the syllable’s pitch-contour shape
and height. Thus, the lexical-tones of a syllable and its adjacent syllables must also be
modeled. To model these factors within an HMM, we propose encoding these factors’ 
combinations as observation symbols of a discrete HMM. Since these factors’ values are 
discrete, a discrete HMM is a more direct selection than a continuous HMM. The detail
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of observation symbol encoding will be described in Section 2.4. As to other minor fac-
tors, such as syllable-final type and syllable position within a word, they are not modeled
in this study. This is because only a limited number, 375, of training sentences are re-
corded currently. Here, the HMM based pitch-contour model is called a syllable
pitch-contour HMM (SPC-HMM).

For training the SPC-HMM, the main processing flowchart shown in Fig. 1 is fol-
lowed. The pitch-contours obtained from analyzing the training sentences must first be
normalized on both time and pitch-height. In this paper, we develop a feasible method for
pitch-height normalization. After normalization, a pitch-contour codebook for each lexi-
cal tone is trained, and the pitch-contour of each syllable is then vector quantized with the
codebook trained for the syllable’s lexical tone. Then, the VQ code of a syllable’s 
pitch-contour and the lexical tones of the syllable and its adjacent syllables are combined
to define an observation-symbol. Afterward, the observation-symbol sequence obtained
from each training sentence is used to train the SPC-HMM.

Time and Pitch
Normalize

Training
Sentences

Pitch-Contour
Codebook Train

and
Vector Quantize

Observation
Symbol Encode

Codebooks,
VQ codes

SPC-HMM
Train

Model
Parameters

Fig. 1. Main flow for training SPC-HMM.

As for generating pitch-contours, the main processing flowchart shown in Fig. 2 is
followed. An input sentence first will be text analyzed to obtain the necessary information,
i.e. the syllable and lexical tone of each Chinese character. According to the lexical tones,
candidate observation symbols can be encoded. Then, a sentence-wide most probable
observation-symbol sequence is searched in the SPC-HMM using the dy-
namic-programming based algorithm proposed here. Next, the observation symbol found
for a syllable is decoded to get its pitch-contour VQ code. In terms of the VQ code, the
pitch-contour can then be looked up from the corresponding VQ codebook.

In Section 2, the functions of the blocks in Fig. 1 are explained in detail. Then, in
Section 3, the functions of the blocks in Fig. 2 are explained. In Section 4, experiments
for determining the size of a VQ codebook and the number of states for an SPC-HMM
are described, and the pitch-contours generated by different SPC-HMMs are evaluated
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with subjective perception tests. Finally, conclusions are given in Section 5.
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Fig. 2. Main flow for generating pitch-contours.

2. SPC-HMM TRAINING

2.1 Pitch-contour Representation

Legendre polynomials [21] and Chebyshev polynomials [22] have been proposed to
expand a syllable’spitch-contour for speech coding and pronunciation assessment appli-
cations, respectively. In contrast, direct representation by sampling a pitch-contour [12]
and expanded representations with the coefficients of Legendre polynomials [13, 15] or
cosine functions [23] have been adopted by different researchers to construct their own
pitch-contour generation models. Also, another type of representation that uses just one
line segment to represent a syllable’s pitch contour is notable [24].

According to the study by Ravuri and Ellis [24], listeners would prefer the original
pitch contours to the linear approximated contours in only 60% of cases. Therefore, sam-
pling a syllable’s pitch-contour with 16 points would be more than adequate. Neverthe-
less, considering that Mandarin is a tonal language, we still choose to represent a
pitch-contour with a vector of 16 pitch frequencies. These pitch frequencies are computed
at 16 normalized time points that are placed uniformly over a syllable’s voiced segment. 
For a normalized time point, its pitch frequency is obtained by interpolating the four pitch
frequencies measured in the four successive signal frames surrounding this time point. In
more detail, consider the example shown in Fig. 3. The point labeled t on the horizon-
tal-axis is the concerned normalized time point, and the unit of time is signal sample.
Suppose that the two closest signal frames on the left side are located at time points tk and
tk+1 and have the measured pitch frequencies, fk and fk+1, whereas the two closest signal
frames on the right side are located at time points tk+2 and tk+3 and have the measured
pitch frequencies, fk+2 and fk+3. Then, the pitch frequency, ft, for the time point, t, is com-
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puted with the Lagrange interpolation formula [25]:
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To measure the pitch frequency of a signal frame, an autocorrelation based method [19]
was adopted. In order to verify the measured pitch frequencies, manual checking and
correcting were performed after automatic measuring.
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Fig. 3. An example of pitch-frequency interpolation.

2.2 Pitch-height Normalization

Training sentences are usually recorded across several days under different moods.
Hence, the pitch height of a training sentence may deviate considerably from the gross
mean. If pitch height normalization is not performed, abnormal pitch-contour transitions
between some adjacent syllables will be heard in the synthesized speech. Therefore, pitch
height normalization must be done before training the SPC-HMM. For this reason, we
developed a simple but feasible normalization method. Using this method, each training
sentence just needs to be recorded once. That is, it is not necessary to record a training
sentence several times and pick the one of the desired pitch height. When developing the
pitch height normalization method, we noted that any two adjacently recorded sentences
did not have contextual influence to each other since they were randomly selected from
different articles and there was a long break between their recordings. Therefore, we need
not consider the contextual influence of adjacent sentences on a given sentence’s average 
pitch height. The processing steps of the proposed normalization method are:
(a) For the i-th training sentence, compute its j-th syllable’s average pitch-height Eij in

logarithmic scale. That is,
15
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1
, log( )

16ij ijk ijk ijk
k

E g ,g f


  (2)

where fijk represents the pitch frequency obtained on the k-th normalized time point
of the j-th syllable. Then, compute this sentence’s average pitch-height Ui as
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where ni denotes the number of syllables in the i-th training sentence.

(b) Compute the gross average pitch-height, UA, across all training sentences,

1

1 SM

i
i

UA U ,
SM 

  (4)

where SM denotes the number of recorded training sentences.

(c) Compute the pitch-height modification value, Zi, for the i-th training sentence as
Zi = Ui–UA (5)

(d) According to Zi, normalize the pitch contour of the j-th syllable in the i-th training
sentence as

ijk ijk ig g Z  , k = 0, 1, ..., 15, j = 1, 2, ..., ni , (6)

Although the pitch height normalization method given above seems simple, it can
however eliminate most abnormal pitch-contour transitions found between adjacently
generated syllable pitch-contours. To further smooth the transition between two adja-
cently generated syllable pitch-contours, we studied another pitch-height normalization
method. This method is applied to the resultant pitch-contours obtained from the prior
normalization method. The processing steps of this method are:

(e) Uniformly divide each training sentence into three segments. Then, collect the sylla-
bles that are divided into the first segment from all training sentences. Next, compute
the average pitch height, 1

k , from the collected syllables that are pronounced in the

k-th lexical tone. Similarly, the average pitch heights, 2
k and 3

k , can be com-

puted from those syllables that are divided into the second and third segments.

(f) For the i-th training sentence, compute its j-th syllable’s pitch-height deviation, dij.
Then, compute the average deviation, id , for this sentence. That is,

( 1)
, 3 1, 1 2 ,m

ij ij k i
i

j
d E m j , , ..., n

n


 
      

 
(7)

1 2( )
ii i , i, i,n id d d ... d / n    (8)

where Eij is the pitch height of the j-th syllable computed from the prior normaliza-
tion method, m is the segment number that the j-th syllable is divided into, k is the
lexical-tone number of the j-th syllable, and ni is the number of syllables in the i-th
training sentence.
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(g) According to the average deviation, id , for the i-th training sentence, normalize the

pitch-contour of the j-th syllable in this sentence as
0 1 15 1 2ijk ijk i ig g d , k , , ..., , j , , ..., n ,    (9)

where ijkg , k=0,1, …, 15, is the j-th syllable’s pitch-contour obtained from the

prior normalization method.

2.3 Vector Quantization of Syllable Pitch-contour

After pitch height normalization, the pitch-contour of the j-th syllable in the i-th
training sentence would be represented as a vector of 16 frequency values, 0i , j ,g ,

1i , j ,g , …, 15i, j ,g , in logarithmic scale. To model a syllable pitch-contour’s frequency 

vector as an observation of a discrete HMM, we must vector quantize it beforehand. We
know that the technique, vector quantizing a pitch-contour, has been proposed previously
by other researchers. In the tone recognition study [26], pitch and delta-pitch frequencies
of each frame are vector quantized while in the speech coding study [21], a syllable’s 
pitch-contour is vector quantized as a whole.

Another consideration here for vector quantizing a syllable pitch-contour is the fol-
lowing. A Mandarin syllable may be superimposed with one of five lexical tones, i.e.
high-leveling, mid-rising, mid-falling, high-falling, and neutral. When a lexical tone is
superimposed to a syllable, a particular pitch-contour is instantiated for the lexical tone.
Nevertheless, the pitch height and contour shape of a pitch-contour is not only affected by
the current lexical tone but also affected by the immediately preceding and following syl-
lables’ lexical tones, i.e. the contextual effect. Accordingly, the pitch-contours instanti-
ated for a lexical tone may be of very different pitch heights and contour shapes. There-
fore, we decide to cover these pitch-height and contour-shape variations of a particular
lexical tone’s pitch-contours with vector quantization.

Here, the pitch-height normalized pitch-contours are first divided into 5 sets accord-
ing to the lexical tones that they represent. Then, for each lexical tone’s pitch-contours,
we use GLA (Generalized Lloyd Algorithm) to train a VQ codebook [27]. The distance
measure adopted here is an RMS (root mean square) one, i.e.,

15
21

16
0

( ) ( )k k
k

dist y, w y w


  (10)

Apparently, the quantization error will become smaller when a larger codebook is
adopted. This, however, is not always good because a larger codebook size will result in
larger observation space for the SPC-HMM. This larger observation space means the
estimated HMM parameter will be coarser. Therefore, a tradeoff should be made.

In this paper, 375 training sentences were recorded from a male speaker for training
pitch-contour VQ codebooks and training the SPC-HMM. The text of each training sen-
tence was independently and randomly selected from different articles. The guideline for
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selection is that every possible tone combination of three adjacent syllables should be
found in both initial and final parts of some sentences. The textual details of these sen-
tences can be seen at http://guhy.csie.ntust.edu.tw/PitchCntr/ 375.html. Among the sylla-
bles of the training sentences, 632, 754, 462, 867, and 210 of them are uttered in
high-leveling, mid-rising, mid-falling, high-falling, and neural tones, respectively. Using
the recorded training sentences, we tested three conditions about pitch-contour codebook
training, i.e., no pitch height normalization, normalization using the first method, and
normalization using the two methods given above. When the codebook size is 8, the VQ
errors measured are on average, 0.03337, 0.03012, and 0.02925, respectively, for the
three conditions. That is, VQ error will become smaller as more normalization methods
are executed.

2.4 Observation Symbol Encoding

In the SPC-HMM, the three hidden states are intended to model the hidden prosodic
states. Next, consider how to define the observation symbols for the SPC-HMM. Note
that the height and shape of a concerned syllable’s pitch-contour is affected not only by
that syllable’s lexical tone but also affected by its left and right adjacent syllables’tones.
Therefore, at time t (i.e. the t-th syllable of a sentence), we decide to combine the t-th
syllable’s lexical tone and pitch-contour VQ code with its left and right adjacent sylla-
bles’ lexical tones to define the observation symbol, Ot, for the time point t. That is,

1 1

1 1

( ), 0 4 0 7

5 5 5
t t t t t t t

t t t t

O encodeA X , X , X ,V X , V

X X X V  
 

 

    

         
(11)

where Xt denotes the lexical-tone number of the t-th syllable, Vt denotes the pitch-contour
VQ code of the t-th syllable in a training sentence, denotes the size of the pitch-contour
codebook for Xt, and 5 is the number of different lexical tones. When t=1, Xt-1 is unde-
fined and must be removed from Eq. (11). Therefore, the encoding function for O1 is
changed to 5Xt + Xt+1 + Vt + LA where LA = 555. Similarly, when t reaches
the last syllable of a sentence, the encoding function for Ot is changed to 5Xt-1 + 
Xt + Vt + LA + LB where LB = 55.

In addition, consider that some three-lexical-tone combinations encountered in the
synthesis phase may not be seen in the training phase due to the insufficiency of training
sentences. We solve this problem by constructing two more simplified SPC-HMMs, for
which observation symbols are encoded with fewer factors. That is, the observation sym-
bol encoding functions,

1

1

( )

2 5
t t t t

t t t

O encodeC X , X ,V

LA LB X X V , 






        
(12)

1

1

( )

3 5
t t t t

t t t

O encodeB X , X ,V

LA LB LC X X V , 






         
(13)

are adopted for the first and second level downgraded SPC-HMMs, respectively, where
LC = 5. Similarly, when t = 1, the encoding function of Eq. (12) is changed to LA +
3LB + Xt + Vt , and when t reaches the last syllable of a sentence, the encoding func-



HMM BASED PITCH CONTOUR GENERATION METHOD 9

tion of Eq. (13) is changed to LA + 4LB + LC + Xt + Vt . Then, if an observation
symbol encoded with Eq. (11) is not seen in the training sentences, its occurrence prob-
ability can still be estimated by alternatively encoding the observation symbol with Eq.
(12) or (13) and taking it into the downgraded SPC-HMMs. The second level down-
graded model will be tried only if the first level downgraded model cannot be applied.

2.5 SPC-HMM Training

Before the normal and the two downgraded SPC-HMMs can be used to generate
syllable pitch-contours, their parameters, aij (the probability of transiting from state i to
state j) and bj(k) (the probability of observing symbol k at state j), must be trained first.
These models can be trained independently since model downgrading will not occur in
the training phase. In training these models, we used the algorithm of segmental K-means
[20]. The details of the algorithm are found in a relevant textbook. Here, the number of
states for an SPC-HMM is tested from 3 to 7, and the state transitions are restricted to a
left-to-right manner. The number of recorded training sentences is 375, and the number of
syllables comprising these sentences is 2,925. As these quantities of training sentences
and syllables are not sufficient, we adopted a sharing (or smoothing) method [28]. That is,
when an observation symbol is seen, 0.0009 and 0.0001 of its occurrence probability are
shared with the two nearest observation symbols that are encoded with the same lexical
tone combination but different pitch-contour VQ code.

In original HMM, observation symbols generated from a same state are assumed to
be mutually independent. Nevertheless, within a Mandarin sentence, adjacent syllables’ 
pitch heights are of certain dependency. Therefore, we tried to use a new type of parame-
ter, cj(k), to model the difference of pitch-height between the prior and current syllables
whose lexical tones, Xt-1 and Xt, are combined to form the observation symbol k at state j.
Here, for the t-th syllable of a sentence, its pitch-height difference, HD(t), is defined as

HD(t) = HF(t)–HB(t-1) (14)

where HF(t) represents the front pitch-height of the t-th syllable and HB(t-1) represents
the back pitch-height of the (t-1)-th syllable. That is,

7 15

0 8

1 1
( ) , ( )

8 8t , j t , j
j j

HF t g HB t g
 

   (15)

where gt,j is the measured logarithmic pitch frequency on the j-th normalized time point of
the t-th syllable. In terms of the parameters HD(t), cj(k) can be estimated as

1 1
and and

( ) ( ) 1

t t t t

n n

j
t t

s.t . s j O k s.t . s j O k

c k HD t ,
 

   

   
   

    
   
   

  (16)

where the training sentence is assumed to have n syllables, and st represents the state
stayed by the t-th syllable. According to our experiment results, the average RMS predic-
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tion error of a syllable pitch-contour can be improved about 2% if the parameters, cj(k),
are taken into account under setting the codebook size to 8 and setting the number of
states to 3. Nevertheless, no improvements were obtained when the codebook size was set
to 8 and the number of states was set to 6. Therefore, the new parameter, cj(k), seems to
be insignificant.

3. PITCH CONTOUR GENERATION

When using an HMM for a speech recognition application, a single observation
symbol is explicitly defined on each time point (frame). Thus, the search space is just a
two dimensional time-state space from which the best (or most probable) path will be
found. As to the searching algorithm, a dynamic programming (DP) based algorithm
(Viterbi algorithm) is commonly adopted [19, 20]. This, however, is not the case for syl-
lable pitch-contour generation using SPC-HMM. Note that a Mandarin sentence to be
synthesized will first be analyzed by the text-analysis component. That is, the syllable
sequence corresponding to a Mandarin sentence is already known before pitch-contour
generation. Hence, we can encode every three adjacent syllables’ lexical tones partially 
(because the VQ code, Vt, is left to be determined) according to Eq. (11). Since each
lexical tone has codewords in its pitch-contour VQ codebook, each syllable of the sen-
tence to be synthesized has possible encoded observation symbols corresponding to it.
Here, the t-th syllable’s possible observation symbols are denoted as 0

tO , 1
tO , …, tO.

Therefore, when applying SPC-HMM to generate syllable pitch-contours, in addition to
the time (syllable) and state axes, a third axis must be added to enumerate the possible
observation symbol candidates. The addition of the third axis means the conventional DP
algorithm for speech recognition cannot be directly applied here.

3.1 Extended Dynamic Programming Algorithm

In this paper, we extend the conventional two-dimensional DP algorithm to solve the
three-dimensional DP problem. In an original two-dimensional DP algorithm [20], the
term t(j) is used to denote the probability of the most probable path that will stay at state
j on time t. Here, we extend it to t(j,k) so the third index k can enumerate the possible
observation symbols. Then, the recursive formula for t(j) must also be extended. The
extension made is:

1
1 0 1

( ) ( ) ( ) ( ) ,k
t t ij j t

j i j m
j,k max max i,m a r t, j,k,m b O


 

  

      
(17)

 1( ) 1 ( ) - ( ) - ( )k m
t t jr t, j,k,m exp HF O HB O c k , (18)

where i is the index to the prior states, m is the index to the prior observation symbols on
time t-1, and r(t,j,k,m) is the probability term introduced here to account for the
pitch-height difference between the pitch-contours of the two observation symbols,
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1
m
tO and k

tO . Note that the probability of observing symbol k at state j, i.e. )( k
tj Ob ,

may be zero in normal SPC-HMM because of insufficient training data. When )( k
tj Ob

is found to be zero, another observation symbol can be encoded with Eq. (12) or (13)
instead and its corresponding occurrence probability is looked up from the corresponding
downgraded SPC-HMM. Here, the probability value found from a downgraded
SPC-HMM is decreased to one thousandth of its original value before being taken into Eq.
(17). This is to prevent model biasing from occurring, i.e. preferring a downgraded
SPC-HMM. Now, according to Eq. (17), the probability of the most probable path within
the three dimensional search space from the starting points, t=1 (time), j=0 (state), and
k=0,1,…,7 (pitch-contour VQ code) to the end points, t=n (suppose of n syllables), j=NS
(the chosen number of states), and k=0, 1,…,7, can be computed as:

 
0 7

( )n
k

p* max NS, k


 (19)

3.2 Pitch-contour Code Decoding

Actually, we need the sequence of the observation symbols selected along the most
probable path but not the probability of the path. If the observation symbol on time t is
determined, its corresponding pitch-contour VQ code, Vt, can be decoded according to
Eqs. (11), (12), or (13). Next, its corresponding pitch-contour can be found from the VQ
codebook of the t-th syllable’s lexical tone in terms of Vt. Therefore, backtracking infor-
mation must be saved during searching the most probable path with Eq. (17). This can be
done by saving the values of the index variables, i and m, that maximize the value of t(j,k)
in Eq. (17). Here, we use the variable, t(j,k), to save the i value of the best coming state,
and the variable, t(j,k), to save the m value of the best prior observation symbol on time
t-1. In detail,

1
0 11

( ) ( ) ( )t t ij
mj i j

j,k arg max max i,m a r t, j,k,m ,


 
 

     
(20)

1
10 1

( ) ( ) ( )t t ij
j i jm

j,k arg max max i,m a r t, j,k,m .


 
 

     
(21)

In terms of t(j,k) and t(j,k), the observation symbol sequence along the most probable
path can then be backtracked as

 
0 1

( )* *
n n n

k
s NS , V arg max NS , k ,





  (22)

1 1 1( ) , -1, -2, ..., 1 ,* * *
t t t ts s , V t n n    (23)

1 1 1( ) , -1, -2, ..., 1 ,* * *
t t t tV s , V t n n    (24)

where n is the number of syllables in the sentence, NS is the number of states, *
ts is the
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state stayed and *
tV is the pitch-contour VQ code selected for the lexical tone tX on

time t.

3.3 Pitch Frequency Interpolation

The pitch-contour VQ code for the t-th syllable is now known to be *
tV according

to Eq. (24). In terms of *
tV , the time-normalized pitch-contour, i.e. 16 pitch frequency

values, can be seen from the VQ codebook for the lexical tone tX . Suppose that the pitch

frequencies found are f0, f1, …, and f15 in Hz after scale conversion from logarithmic to
linear, and the duration assigned to the voiced segment of the t-th syllable is DT in signal
samples. Then, according to the definition of time-normalization, fk is the pitch frequency
on the k-th uniformly placed time point, Tk, and Tk = DT * k / 15. In terms of these pairs,
(f0, T0), (f1, T1), …, (f15, T15), the pitch frequency on any given time point T can be inter-
polated using the closest pairs around T. Suppose that T is located between Tj and Tj+1.
Then, the four pairs, (fj-1, Tj-1), (fj, Tj), (fj+1, Tj+1), and (fj+2, Tj+2), will be used to interpo-
late the pitch frequency on the time point T. Here, the method of Lagrange interpolation
[25] is adopted and the formula is of the form in Eq. (1). In the case where j-1 is less than
zero, the pair, (fj+3, Tj+3), will be used instead. Similarly, if j+2 is greater than 15, the pair,
(fj-2, Tj-2), will be used instead.

3.4 A Variant Method for Applying SPC-HMM

Note that the prosodic information, breath-breaks and word-boundaries, are not used
in training the SPC-HMM. Also, such information is not used in Section 3.1 to find the
most probable path. Thus, it may be unclear whether the syllable pitch-contours generated
according to the most probable path found in Section 3.1 are perceptually satisfactory. To
study this problem, a second path-finding method that makes use of breath-break and
word-boundary information is proposed and tested for applying the SPC-HMM. In this
paper, the path-finding operating mode, described in Section 3.1, is called the Mode-A
generation mode, and the path-finding operating mode that utilizes the prosodic informa-
tion is called the Mode-B generation mode. In the generation mode, Mode-B,
breath-breaks and word-boundaries are determined first by the text-analysis component.
Then, such information is used to set up a state transition sequence for the SPC-HMM.
Even though the state transition sequence is determined beforehand, finding the best ob-
servation symbol sequence for a sentence is still a two-dimensional (observation-symbol
candidate axis and syllable-time axis) searching problem. The most probable path in the
two-dimensional search space can be found by a conventional DP algorithm [20].

In the generation mode, Mode-B, the SPC-HMM used must be of exactly 3 states,
and the state that a syllable would stay at is assigned according to some rules designed
here. We will explain the rules through an example. Suppose that there is a breath-break
between the third and forth syllables of a sentence consisting of seven syllables. Then, the
state transition sequence will be set to 0, 1, 2, 1, 1, 2, and 2. The transition from state 2 to
1 is allowed in the Mode-B generation mode. That is, the state transition probability is
changed to a value greater than 0 (e.g. 0.1). The first rule designed is: for the syllables
within the first breath group, they are uniformly assigned to the 3 states. The second rule
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designed is: for the syllables in the second or latter breath groups, they are uniformly as-
signed to the two states, 1 and 2. As to the word boundary information, they are used to
adjust the state assignments made with the breath-breaks. The third rule designed is: the
two syllables of a two-character word must be assigned the same state to have their
pitch-contours generated by the same prosodic state. If this rule is violated, the second
syllable’s state is then reassigned to the first syllable’s state. In addition, the fourth rule
designed is: the last syllable in the first breath group must be assigned to State 1 or 2, and
the last syllable in a latter breath group must be assigned to State 2. This rule is permitted
to override the third rule. When these rules are followed, the state sequence will present a
wave-like vibration in terms of the prosodic states, i.e. States 1 and 2 will be stayed al-
ternatively.

4. SPC-HMM EXPERIMENTS AND PERCEPTION TESTS

4.1 Experiments for VQ Codebook Size

Since the SPC-HMM is a discrete HMM, a syllable’s pitch-contour must be repre-
sented with a VQ code. Here, an interesting question is how many codewords a lexical
tone’s pitch-contour codebook should have. To answer this question, we conducted a
series of testing experiments. In the first run, the first 30 sentences of the 375 recorded
sentences were taken as the testing sentences, and the remaining sentences were used to
train the SPC-HMM. In the second run, the second 30 sentences are taken as the testing
sentences and the remaining sentences are used to train the SPC-HMM. Continuing in
this manner, a total of seven runs of experiments were conducted. In addition, note that
each run actually includes 10 experiments to test the five codebook sizes, i.e. 4, 6, 8, 10,
and 12, under the two NS (number of states) values, 3 and 6, respectively. In detail, in
each experiment, the steps indicated in Figs. 1 and 2 were executed in sequence. The
steps include: (a) normalizing a pitch-contour’s pitch-height, (b) training each lexical
tone’s codebook, (c) vector quantizing pitch-contours and encoding observation symbols,
(d) training SPC-HMM, (e) generating pitch-contour VQ codes for the training sentences,
i.e. inside test, and (f) generating pitch-contour VQ codes for the testing sentences, i.e.
outside test. In Steps (e) and (f), the method used to generate a syllable’s pitch contour is
as described in Sections 3.1 and 3.2.

Here, the prediction error between a generated pitch contour and its corresponding
recorded (already normalized on pitch-height) contour is measured with the formula
given in Eq. (10). For each combination of a codebook size and one of the two NS values,
prediction errors computed for the outside and inside tests are averaged. Then, the aver-
age errors are collected and averaged again for the seven runs. As a result, the average
prediction errors for the inside and outside tests are as listed in Table 1 for different
codebook sizes and NS values. For illustration, these error values are taken to draw the
curves in Fig. 4.

Table 1. Pitch-contour prediction errors for 5 different codebook sizes.

Codebook size 4 6 8 10 12
Inside 0.05015 0.05030 0.05014 0.04981 0.04950NS=3
Outside 0.04994 0.05254 0.05300 0.05331 0.05250
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Inside 0.04466 0.04338 0.04321 0.04289 0.04279NS=6
Outside 0.04593 0.04579 0.04579 0.04667 0.04665

0.042
0.043
0.044
0.045
0.046
0.047
0.048
0.049

0.05
0.051
0.052
0.053
0.054

3 4 5 6 7 8 9 10 11 12 13

code-
book

size

avg err inside(6s) outside(6s) inside(3s) outside(3s)

Fig. 4. Pitch-contour prediction error curves for 5 codebook sizes.

From Fig. 4, it can be seen that the two prediction error curves for the inside tests
will both go downward as the codebook become larger. Nevertheless, this trend seems to
be saturated for the lower curve obtained under the setting NS=6. In contrast, the two
prediction error curves for the outside tests present different trends. The upper one, ob-
tained under NS=3, goes upward and then downward while the lower one, obtained under
NS=6, goes slightly downward and then upward. Also, it is apparent that the two curves
obtained under NS=6 are both lower, i.e. of less prediction error, than the curves obtained
under NS=3. Hence, according to the two curves obtained under NS=6, we think the
codebook size “eight” is the best choice since the smallest outside test error and almost
saturated inside test error will be obtained by using this size. Therefore, this codebook
size is adopted in the following experiments.

4.2 Experiments for Number of States

Another question about using SPC-HMM is how many states an SPC-HMM should
have. To study this problem, we fixed the size of the pitch-contour VQ codebook for each
lexical tone to eight and varied the number of states (NS) from 3 to 7. Similarly, seven
runs of experiments, as described in Section 4.1, were set up and conducted. Here, each
run included five experiments to test the five NS values, i.e. 3, 4, 5, 6, and 7, respectively.
For each NS value, prediction errors computed for the outside and inside tests were aver-
aged. Then, the average errors were collected and averaged again for the seven runs. Ba-
sically, in each experiment, the steps indicated in Figs. 1 and 2 were executed in sequence.
Additionally, we wanted to study the influence of pitch-height normalization here.
Therefore, another five experiments were also set up and conducted in each run where the
pitch-heights of the recorded syllables were not normalized. That is, the step of
pitch-height normalization was skipped, and the recorded pitch-contours (without
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pitch-height normalization) were used instead for measuring prediction errors. As a result,
the average prediction errors for the inside and outside tests under the two conditions,
with and without pitch-height normalization, were as those listed in Table 2 for different
NS values. For illustration, these error values are taken to draw the curves in Figs. 5 and 6
for with and without pitch-height normalization, respectively.

Table 2. Pitch-contour prediction errors for 5 different NS values.

NS value 3 4 5 6 7
Inside 0.05014 0.04722 0.04490 0.04322 0.04204Pitch-height

Normalized Outside 0.05300 0.04957 0.04670 0.04578 0.04560
Inside 0.07614 0.07546 0.07334 0.07171 0.07205Pitch-height

Un-normalized Outside 0.09851 0.09463 0.09263 0.09244 0.09543

0.04

0.042

0.044

0.046

0.048

0.05

0.052

0.054

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
num

states

avg err inside test outside test

Fig. 5. Pitch-contour prediction error curves for 5 NS values with pitch normalization.
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0.086
0.088

0.09
0.092
0.094
0.096
0.098

0.1

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5
num

states

avg err inside test outside test

Fig. 6. Pitch-contour prediction error curves for 5 NS values without pitch normalization.

When the two figures, Figs. 5 and 6, are compared, it can be seen that the two curves
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in Fig. 5 display much lower prediction errors than each of the curves in Fig. 6. Also, the
gap between the two curves, for inside and outside tests, respectively, in Fig. 6 would be
largely reduced to the gap between the two curves in Fig. 5. Therefore, the proposed
pitch-height normalization procedures, as explained in Section 2.2, can indeed help re-
duce the prediction error of a generated pitch-contour by an SPC-HMM. In addition to
the benefit observed for pitch-height normalization, another noticeable phenomenon can
be found from both Fig. 5 and Fig. 6. That is, for outside tests, the prediction errors of the
generated pitch-contours apparently will decrease as the number of states, NS, is in-
creased. Nevertheless, the decreasing of prediction error would be saturated, as seen in
Fig. 5, when NS becomes greater than 5. In contrast, the prediction error would be in-
versely increased, as seen in Fig. 6, when NS is set to 7. According to the trends of the
curves for the outside tests, we chose to set NS to 6 for conducting perception tests.

4.3 Perception Tests: Intra-techniques

To perceptually evaluate the pitch-contour generation method proposed here, we
built a prototype system to synthesize Mandarin speech. In this system, a word dictionary
is referred to for parsing an input sentence into a sequence of words and for obtaining a
word’s pronunciation syllables. As to the placement of breath-breaks, an automatic
method has not been developed yet. Therefore, each breath-break is indicated by the spe-
cial character, “”, and is manually inserted into the sentence to be synthesized. As for
the values of the prosodic parameters, syllable duration and amplitude, they are deter-
mined separately by two ANNs that were constructed in a previous study [2]. For signal
synthesis, the synthesis method of HNMES [5] is adopted. Note that Mandarin has only
408 unique syllables if the lexical tones are not distinguished. Therefore, each of the 408
syllables is just recorded and saved once for analyzing its HNM parameters. Then, the
same HNM parameters analyzed from a syllable are used to synthesize various syllable
signals for different requested combinations of syllable durations and pitch-contours [5].

Utilizing the prototype system and the same article of 131 Chinese characters for
input for each file, 3 speech files were synthesized via SPC-HMM under different pa-
rameter settings and generation modes. The 3 synthetic speech files are denoted here as
SA, SB, and SC. SA was synthesized under the condition that the number of states and
codebook size were set to 3 and 8, respectively, along with the Mode-A generation mode
mentioned in Section 3.4 being adopted. To study the influence of the number of states,
SB was synthesized by setting the value of NS to 6 while the codebook size and genera-
tion mode were kept the same as SA. In addition, to study the performance of the genera-
tion mode, Mode-B, SC was synthesized by setting the number of states and codebook
size to 3 and 8, respectively, as set for SA, but the generation mode, Mode-B, was
adopted instead. These 3 synthetic speech files can be accessed at
http://guhy.csie.ntust.edu.tw/PitchCntr/SPCHMM.html .

After preparing the synthetic speech files, we invited 15 persons to participate in the
perception tests. In the first run of tests, the speech files, SA and SB, were played in order
to each of the participants. Then, he (or she) was requested to give a score to indicate
which pitch-contour was more natural and preferred. The scores defined here are from -3
to 3. Among the seven scores, 3 (-3) means SB is much better (worse) than SA, 2 (-2)
means SB is better (worse) than SA, 1 (-1) means SB is slightly better (worse) than SA,
and 0 means SA and SB are not distinguishable. In the second run of tests, the speech
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files, SB and SC, were played to each of the participants. Then, he (or she) was similarly
requested to give a score to indicate which pitch-contour was more natural and preferred.
After the perception tests, the scores given by the participants were collected for the two
runs separately then averaged. The average scores obtained for the two runs are 1.533
and 0.467, respectively, and their standard deviations are 1.360 and 1.628, respectively.

According to the first score, 1.533, we think that the naturalness level of the gener-
ated pitch-contours with an SPC-HMM of 6 states is perceptually verified to be signifi-
cantly better than the pitch-contours generated with an SPC-HMM of 3 states. On the
other hand, according to the score, 0.467, we think that the generation mode, Mode-B,
seems to be slightly better than (or comparable with) the generation mode, Mode-A, un-
der NS=6 although an SPC-HMM of only 3 states is used here to operate the Mode-B
generation mode.

4.4 Perception Test: Inter-techniques

Several ANN based pitch-contour generation methods have been proposed [13, 14],
including a generation method we have already studied [29]. One may wonder whether
the SPC-HMM based method can outperform an ANN based method. Therefore, we used
the same recorded sentences to train and test the ANN designed in our previous study
[29]. The structure of the ANN is illustrated in Fig. 7. That is, the ANN has 28 nodes in
the input layer for inputting 8 contextual parameters, and 16 nodes in the output layer for
outputting and representing a syllable’s pitch contour. The 8 contextual parameters
adopted are shown in Table 3. More details are given in our previous work [29]. In addi-
tion, the ANN has one hidden layer and one recurrent hidden layer. The number of nodes
to be placed in the hidden layers was tested from 19 to 23. The best choice was found to
be 21. When using 21 nodes in the hidden layers, we obtained average pitch-contour pre-
diction errors of 0.03295 and 0.03619 for the inside and outside tests, respectively. The
value, 0.03619, is apparently much better than 0.04560, the average error obtained from
using SPC-HMM in outside tests. Therefore, according to objective measuring of
pitch-contour prediction errors, the ANN based method will perform better than the
SPC-HMM based method.

8 contextual parameters

16 dim. pitch contour

Fig. 7. Structure of our ANN for pitch contour generation.
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Table 3. The 8 contextual parameters.

Items Tone of
previous
syllable

Final
class of
previous
syllable

Tone of
current
syllable

Initial of
current
syllable

Final of
current
syllable

Tone of
next

syllable

Initial
class of

next
syllable

Time
progress

index

Bits 3 4 3 5 6 3 3 void

On the other hand, subjective perception tests were also conducted for comparing
the SPC-HMM based method with the ANN based method. For the SPC-HMM based
method, the synthetic speech file, SC, as described in Section 4.3, was selected as the
representative. As for the ANN based method, the same speech synthesis system was used,
except that the pitch contour generation module was replaced with the ANN module us-
ing 21 nodes in the hidden layers. Here, the speech file synthesized using the ANN pitch
contour generation module is denoted as SD. In terms of SC and SD, each of the 15 in-
vited persons was requested to give a score after he (or she) listened to the two files. A
score of positive value means SD is better and preferred over SC in naturalness level of
synthetic pitch contours. In contrast, a score of negative value means SC is better and
preferred. The detailed definitions for the allowed scores are the same as those given in
Section 4.3. After perception tests, the scores given by the 15 persons were collected and
averaged. The average score obtained is -0.600, and its standard deviation is 0.952.
Therefore, the naturalness level of the SPC-HMM based method is slightly better than (or
comparable to) that of the ANN based method. One explanation for such perception-test
result is that the information of prosodic states (represented as the states of an HMM) and
word boundaries are explicitly utilized in the SPC-HMM based method. In contrast, the
information of word boundaries is not used by the ANN model, and the transitions be-
tween prosodic states are not explicitly knowable for the ANN model. When the results
of the two evaluations (objective prediction-error measuring and subjective perception
testing) are put together, we think that a variant speaking style realized via the
SPC-HMM generated syllable pitch-contours may be perceived as natural and preferred
although the pitch-contours are not like those originally uttered.

5. CONCLUSIONS

In this paper, we have studied and proposed a syllable pitch-contour generation
method that uses discrete HMM to model the implicit prosodic states stayed and that en-
codes a discrete observation symbol in terms of vector quantizing a syllable’s 
pitch-contour. In this method, SPC-HMM, the criterion of sentence-wide optimization is
used to define the probability of a syllable pitch-contour VQ code sequence. To find the
sequence of the highest probability efficiently, we have also developed a dynamic pro-
gramming based algorithm. In addition, we have proposed a simple but effective method
for pitch-height normalization. Via this method, abnormal pitch-contour transitions be-
tween adjacent syllables almost can be eliminated in synthesized speech.

For the size of a lexical tone’s pitch-contour codebook, we have conducted a series
of testing experiments. The results of the experiments show that using a codebook of 8
codewords is the best choice. As to the number of states for structuring an SPC-HMM,
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our experimental results show that an SPC-HMM of 6 states will generate pitch-contours
with saturated prediction errors. In addition, according to the perception tests’ results, an
SPC-HMM of 6 states can indeed outperform an SPC-HMM of 3 states if they are oper-
ated in the Mode-A generation mode. Nevertheless, another result is still notable. In the
Mode-B generation mode, the prosodic information, breath-breaks and word boundaries,
are utilized to set the state staying sequence for an SPC-HMM to generate syllable
pitch-contours. After perceptual testing, it is found that an SPC-HMM of 3 states oper-
ated in the Mode-B mode can generate syllable pitch-contours that are slightly more
natural than those generated by an SPC-HMM of 6 states operated in the Mode-A mode.
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