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Abstract: 
In this paper, we study a different spectral mapping 

mechanism based on linear multivariate regression (LMR). 
Such LMR based spectral mapping methods are intended to 
alleviate the problem of spectral over-smoothing usually 
encountered by a GMM based method. First, we derive a 
solution formula to determine the best LMR mapping matrix. 
Then, for experimental evaluation, we record a parallel corpus, 
and adopt discrete cepstrum coefficients (DCC) as the spectral 
features. Next, we label and segment the recorded sentences into 
the speech units of syllable initials and finals. Hence, an LMR 
mapping matrix is trained for each syllable initial or final type. 
In terms of these LMR mapping matrices, we construct a voice 
conversion system. According to the measured average 
conversion errors, our system when using the mapping method, 
LMR_F, can indeed outperform a conventional GMM based 
voice conversion system. In addition, listening tests are 
conducted. The results show that the converted speech by our 
system is slightly better than that converted by a conventional 
GMM based system. 
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1. Introduction 

The purpose of voice conversion is to convert the speech 
of a source speaker into the speech of a target speaker. 
Recently, many researchers based on Gaussian mixture model 
(GMM) to study voice conversion [1], and tried to solve 
problems encountered. One of the typical problems 
encountered when GMM is adopted to map spectral 
coefficients is the phenomenon of over-smoothed converted 
spectral envelopes. One example is drawn in Figure 1. The 
dash-lined curve represents the spectral envelope of one 
frame uttered by the target speaker whereas the solid-lined 
curve represents the corresponding converted spectral 
envelope. Comparing these two curves, we see that the 
formants, F2, F4 and F6, on the solid-lined curve become 

broader, i.e. the depth from a peak to its left or right valley is 
decreased. When such over-smoothed spectral envelopes are 
used to synthesize speech signal, the resultant speech will be 
perceived as muffled and distorted. 

 
Figure 1. An over-smoothed converted spectral envelope 

In this paper, we decide to study a different kind of 
spectral mapping method in the hope to prevent spectral 
over-smoothing from occurring. The mapping method 
adopted is LMR, and the criterion of least mean square (LMS) 
error is based to determine the optimal value for the mapping 
matrix. The concept of LMR is as follows. In the training 
stage, a mapping matrix, M, of size d×d is trained first with a 
parallel corpus. Here, d denotes the number of dimensions of 
a spectral feature vector. Then, in the conversion stage, a 
feature vector, Sk (size d×1), computed from the k-th frame of 
a source-speaker utterance will be converted to Vk with LMR. 
That is, let Vk = M•Sk . We know that the idea of converting 
spectral envelope with LMR is not new and is already 
proposed in 1992 by Valbret, et al. [2]. Nevertheless, the 
solution method proposed to determine the matrix, M, is not 
complete in the regression constants. Therefore, we are 
motivated to study an analytic and complete solution method 
for the mapping matrix, M. The details of our derived formula 
are explained in Section 2. 



 

 

In addition, we consider another problem mentioned in 
some previous works by other researchers [3], [4]. That is, 
the problem of one-to-many mapping will be encountered 
when voice is converted with the conventional GMM based 
methods. Such problem may result in that the converted 
spectral envelopes from some adjacent source frames become 
discontinuous, and such spectral discontinuities cause artifact 
sounds being synthesized. To alleviate the problem of 
one-to-many mapping, we thus decide to label and segment 
the recorded sentences into the speech units of syllable 
initials (e.g., /b/, /s/, /n/, etc) and finals (e.g., /a/, /ia/, /uai/, 
/ang/, etc). Next, the speech frames segmented to a same type 
of syllable initial or final are put together into a group 
corresponding to that type. Then, the frames collected in each 
group are used to train a dedicated LMR mapping matrix for 
that group’s corresponding syllable initial or final. 
Nevertheless, in the conversion stage, how can we know to 
which syllable initial or final type an input frame belong? 
This is a problem to be solved as speech recognition. 
However, it needs not to be so serially treated as in speech 
recognition. An erroneously recognized but similar type of 
syllable initial or final may be tolerable for voice conversion. 
Also, we had studied a voice conversion method based on 
segmental GMM previously [3]. In that work, an algorithm 
for automatic selection of segmental GMM is proposed. That 
algorithm may be used to determine the initial or final types 
for a sequence of input source (source speaker) frames. 

Another issue for voice conversion is the selection of 
spectral coefficients. Here, we continue to adopt discrete 
cepstrum coefficients (DCC) [5], [6] as the spectral features. 
The order of DCC is set to be 40. That is, 41 DCC, c0, c1, 
c2, ..., c40, are estimated from each frame. Among the 41 DCC, 
just 40 coefficients (c0 eliminated) are used for spectral 
mapping. That is, the number of dimensions, d, is 40 here. 
After spectral mapping, the converted DCC are taken to 
compute their corresponding spectral envelope [5], [6]. Then, 
according to the spectral envelope and pitch frequency 
converted from a source frame, the harmonic and noise 
parameters’ values for harmonic plus noise model (HNM) [6], 
[7] can be determined. Thereafter, those HNM parameters of 
successive frames are used to re-synthesize speech signal [6], 
[7], i.e. the converted speech signal. 

2. LMR Mapping Matrix 

In the training stage, speech segments belonging to a 
same segment type (e.g. /n/ is a syllable initial type and /ia/ is 
a final type) are put into a group. Then, each pair of parallel 
segments within the group are framed and aligned through 
dynamic time warping (DTW). Therefore, each source frame 
has an aligned target (target speaker) frame associated with it. 

Here, let S1, S2, ..., SN, be the sequence of DCC vectors 
computed from the source frames. After DTW, another 
sequence of DCC vectors, T1, T2, ..., TN, can be computed 
from the target frames aligned to the source frames. For 
convenience of derivation, let S = [S1, S2, ..., SN], i.e. let S be a 
d×N matrix consisted of N columns of source DCC vectors. 
Similarly, let T = [T1, T2, ..., TN], i.e. T is consisted of N 
columns of target DCC vectors. Ideally, we intend to find an 
LMR mapping matrix, M, of size d×d, in order that the 
relation of equality, 

M • S = T ,  (1) 

is held. 
In practice, N is usually much larger than d. Therefore, 

an ideal mapping matrix, M, will not exist. That is, some 
error will be induced when a source DCC vector, Sk, is to be 
mapped to Tk through M•Sk . Here, let E be the error matrix, 
of size d×N, whose definition is 

E = M•S – T .  (2) 

The goal, to find an optimal mapping matrix, M, is 
equivalent to minimize the absolute values of all the elements 
of E. Notice that the number of elements in E is d×N, which 
is much larger than d×d, the number of elements in M. 
Therefore, the criterion of LMS is adopted here, and a matrix, 
ε , consisted of squared errors is computed first. The 
definition of ε  is 

t t= ( )( ) , t : transpose.E E M S T M S Tε ⋅ = ⋅ − ⋅ −   (3) 

Then, the trace of ε , i.e. 1,1 2,2 ,tr( ) ... d dε ε ε ε= + + + , is 

partially differentiated with M, and the result of the partial 
differentiation is set to be a zero matrix [5, 6]. The 
corresponding formula is 

( ) ttr( )
2( ) 0 .M S T S

M

ε∂
= ⋅ − ⋅ =

∂
  (4) 

In Equation (4), the matrix-form notation, ( )tr( )ε∂  / M∂ , 

is actually meant to denote ( )tr( )ε∂  / ,i jM∂ , j=1, 2, ..., d, 

i=1, 2, ..., d, in a compact form. After rearranging Equation 
(4), the formulas below are derived. That is, an analytic 
solution for the mapping matrix, M, is obtained. 

t t=  ,M S S T S⋅ ⋅ ⋅   (5) 

t t 1( ) .M T S S S −= ⋅ ⋅ ⋅  (6) 

Now, in terms of Equation (6), a local optimal solution 
for M can be obtained. The matrix M obtained is just a local 
optimal. Consider the example of univariate linear regression 
drawn in Figure 2(a). The regression line is constrained to 
pass the origin point, which will inevitably induce larger 
regression errors as compared with the errors induced in 



 

 

Figure 2(b). Note that Figure 2(a) can be viewed as a visual 
example for the mapping matrix M given in Equation (1). 
That is, the regression line is constrained to pass the origin 
point, and thus induces larger regression errors. 
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(a)  y = m · x                        (b)  y = m · x + c 

Figure 2. Examples of univariate linear regressions 

In this paper, we study to eliminate the constraint, 
passing the origin point. According to the example, Figure 
2(b), it is seen that a constant term must be added to each 
dimension of the target vector (i.e. y in Figure 2) in order to 
eliminate the constraint. Hence, the method proposed here is 
as follows. First, the definitions of the three matrices, M, S, 
and T, are extended to M , S , and T  in the manner as 
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In Equation (7), the matrix, M , is formed by placing the 
matrix, M, to the upper left corner, adding a (d+1)-th row of 
constant values (all 0 except the last 1), and adding a (d+1)-th 
column of variable elements. As to the matrices, S , T , they 
are extended from S and T by adding the (d+1)-th row of 
constant values (all 1). Then, the three matrices, M , S , T , 
are taken to replace the matrices, M, S, and T in Equation (6) 
to solve the value of the optimal mapping matrix, M . 
Consequently, the regression error induced when applying the 
mapping, M • S , will be reduced. 

3. System Implementation – Training Stage 

For the voice conversion system built here, its 
processing flow for the training stage is as that shown in 
Figure 3. First, we invited two male speakers, denoted MSA 
and MSB, and two female speakers, denoted FSA and FSB, 
to record 375 Mandarin parallel sentences in a soundproof 
room. The number of syllables recorded is totally 2,926 for 
each speaker, and the sampling rate is 22,050 Hz. Among the 
four speakers, four speaker-pairs are associated to conduct 

voice conversion experiments, i.e. (MSA, MSB), (MSA, 
FSA), (FSA, MSA), and (FSA, FSB). In each pair, the former 
is the source speaker whereas the latter is the target speaker. 
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Figure 3. The processing flow for the training stage 

3.1. Labeling and segmentation 

The first 350 sentences of the recorded sentences are 
taken to train the conversion models whereas the 25 left 
sentences are used to test the conversion methods. First, these 
sentences are labeled by forced alignment with HTK (HMM 
tool kit). The boundary positions of each speech segment can 
thus be roughly obtained. Here, a speech segment is either a 
syllable initial or a syllable final. In Mandarin, a syllable 
initial is a consonant, and a syllable final is a vowel or 
diphthong with possibly an ending nasal phoneme. Since the 
boundary positions given by HTK are not accurate enough, 
we have to check the boundaries of each segment and correct 
them manually with the software package, Wavesurfer. 

After labeling, the speech segments of the training 
sentences are grouped according to their labels. Here, we 
group these segments to 57 groups, including 21 syllable 
initial groups and 36 final groups. 

3.2. DCC computation and DTW alignment 

The length of a frame is 512 sample points (23.2 ms) 
and the frame shift is 128 points (5.8 ms). For each frame, 41 
DCC coefficients are computed with a program module 
developed previously [6]. 

Because the speaking rates of the source and target 
speakers may be inconsistent, the sequence of frames sliced 
from a source segment must be aligned with the frame 
sequence sliced from its corresponding target segment. This 
alignment is done through DTW as usual. 



 

 

3.3. LMR matrix computation 

An LMR matrix was trained for each of the 57 groups. 
Since a group has several parallel segments collected, we 
have to separately align each pair of source and target 
segments through DTW. Then, the j-th target segment’s 
aligned frame sequence is concatenated to the aligned frame 
sequence of the (j-1)-th target segment, and so on. Next, DCC 
vectors can be computed from the concatenated frame 
sequence and form the matrix, T, used in Equation (1). On the 
other hand, the source segments’ frame sequences are 
concatenated directly, and DCC vectors are computed from 
the concatenated frame sequence and form the matrix, S, used 
in Equation (1). In terms of the two matrices, S and T, the 
basic LMR mapping matrix, M, can then be computed by 
applying Equation (6). In addition, after extending S and T to 
S  and T  as in Equation (7), we can compute the full LMR 
mapping matrix, M , according to Equation (6), too. 

3.4. Pitch parameters 

For each frame, the zero-crossing rate (ZCR) is 
computed first to determine if it has high ZCR value and is 
thus unvoiced. If a frame does not have high ZCR value, a 
pitch detection method based on autocorrelation function and 
AMDF [8] is then used to compute the pitch frequency of the 
frame. A frame may still be decided to be unvoiced if it does 
not pass the periodicity checking rules. For each speaker, the 
pitch frequencies of his voiced frames are computed first. 
Then, the average value and standard deviation of these pitch 
frequencies are calculated in logarithmic scale. These two 
values, average and standard deviation, are the pitch 
parameters adopted here for a speaker. 

4. System Implementation – Conversion Stage 

The processing flow of our system in the conversion 
stage is shown in Figure 4. After a spoken sentence of the 
source speaker is inputted, it is first sliced into a sequence of 
frames. The frame length and shift are same as those 
mentioned in Section 3.2. Then, in the left flow of Figure 4, 
the pitch frequency of each frame is detected. If a frame is 
detected to be unvoiced, the three gray colored blocks in 
Figure 4 will be skipped directly. That is, the pitch frequency 
of the frame is not defined and need not be adjusted, and the 
spectral parameters, DCC, will not be converted. On the other 
hand, if a frame is decided to be voiced, the "pitch adjusting" 
block will be executed, and the formula for adjusting pitch is 
as Equation (8), 

( )
( ) ( )

( )
( ) ,

y
y x

t tx
q p

σμ μ
σ

= + −   (8) 

where pt is the detected frequency of a source frame, μ(x) 
and σ(x) denote the average and standard deviation of the 
source speaker's pitch frequency, andμ(y) and σ(y) denote 
those of the target speaker's pitch frequency. 

HNM based 
speech synthesis 

Pitch 
adjusting 

LMR 
mapping 

Compute 
 DCC 

Converted 
voices 

Detect 
pitch freq. 

Test sentences 

Framing 

Segment 
recognition

 
Figure 4. The processing flow for the conversion stage 

4.1. Speech segment recognition 

Notice that the focus of this paper is to study the 
conversion capability of the spectral mapping method based 
on LMR. Hence, the function of the block, "Segment 
recognition", is currently replaced with the label file 
corresponding to the input sentence. That is, the segment 
boundaries and phonetic labels for the speech segments 
comprising an input sentence are read from its corresponding 
label file directly. 

In the future, we may implement the function of 
segmentation recognition with HTK to treat the case that the 
sentence is on-line uttered. As another choice, we may apply 
the algorithm proposed in our previous work [3] to determine 
segment boundaries and types (syllable initials and finals) 
automatically. 

4.2. HNM based speech synthesis 

In HNM, the spectrum of a voiced frame is split into two 
parts, i.e. lower frequency harmonic part and higher 
frequency noise part. The boundary frequency between the 
two parts is termed the maximum voiced frequency (MVF) 
[7]. To simplify the processing of speech signal synthesis, the 
MVF values of voiced frames are all fixed to 6,000 Hz in this 
study. 

For a voiced frame, its DCC coefficients will be mapped 
by the block, LMR mapping, in Figure 4. This block is 
however bypassed for an unvoiced frame. Then, the DCC 
coefficients are inversely transformed to obtain a curve of 



 

 

spectral envelope. According to the spectral envelopes of 
successive frames, speech signal is synthesized with an HNM 
based scheme. That is, harmonic signal and noise signal are 
separately synthesized and then added to obtain the final 
speech signal. The synthesis processing with HNM will not 
be detailed here because the details can be found from our 
previous works [3, 6]. 

5. Experimental Evaluation 

In Section 2, two LMR based mapping methods are 
proposed. The first method is to apply the matrix, M, defined 
in Equation (1) to map the DCC coefficients of a source 
frame. This method is termed the basic LMR mapping and is 
denoted as LMR_B. In contrast, the second method is termed 
the full LMR mapping and is denoted as LMR_F. In the 
method, LMR_F, the mapping matrix, M , defined in 
Equation (7) is used instead. 

5.1. Measuring conversion error 

Notice that 375 sentences are recorded from each 
speaker and only the first 350 sentences are used to train the 
LMR mapping matrices. Therefore, the 25 remaining 
sentences (totally 209 syllables) are used here for outside 
testing whereas the first 350 sentences are used for inside 
testing. In addition, for the purpose of comparison, we also 
used the fist 350 sentences to train a conventional GMM 
consisting of 128 Gaussian probability distributions [1]. The 
GMM based mapping method is denoted as GMM_128. 

Let R = R1, R2, …, RN be the sequence of converted 
DCC vectors, and T = T1, T2, …, TN be the corresponding 
sequence of target DCC vectors. To measure the error 
induced by a conversion method, we use the formula, 

1

1

( , ) ,avg k kN
k N

D dist R T
≤ ≤

=     (9) 

to compute the average conversion error between the two 
sequences, R and T. In Equation (9), the function, dist( ), 
calculates the geometric distance between the two vectors, Rk 
and Tk. In terms of Equation (9), we measure the average 
conversion errors induced by the three voice conversion 
methods, LMR_B, LMR_F, and GMM_128. In addition, 
Equation (9) is applied four times each for one of the four 
speaker pairs, (MSA, MSB), (MSA, FSA), (FSA, MSA), and 
(FSA, FSB). Then, a gross average, AVG, is computed. In 
details, the values of the average conversion errors for the 
three methods are listed in Table 1. 

From the first and second columns of Table 1, it can be 
seen that the full LMR based method, LMR_F, is as expected 
better than the basic LMR based method, LMR_B, in the  

TABLE 1.  AVERAGE ERRORS MEASURED WITH THE CONVERSION METHODS, 
LMR_B, LMR_F, AND GMM_128 

Conversion errors LMR_B LMR_F 
GMM 

(128 mix.)
MSA=> MSB 0.4890 0.4794 0.5058 

MSA=> FSA 0.4782 0.4705 0.5012 
FSA=> MSA 0.4967 0.4881 0.5412 
FSA => FSB 0.5514 0.5443 0.5853 

Inside 
tests 

AVG 0.5038 0.4956 0.5334 
MSA=> MSB 0.5467 0.5331 0.5346 
MSA=> FSA 0.5174 0.5106 0.5147 
FSA => MSA 0.5388 0.5307 0.5551 
FSA => FSB 0.5867 0.5782 0.5806 

Outside 
tests 

AVG 0.5474 0.5382 0.5463 

 
conversion error induced. The reductions in conversion error 
are 1.6% and 1.7% respectively for the inside and outside 
tests. In addition, from the second and third columns of Table 
1, it is found that the method, LMR_F, studied here can 
outperform the conventional GMM based method, 
GMM_128, in both inside and outside tests. The reductions in 
conversion error are 7.1% and 1.5% respectively for the 
inside and outside tests. Therefore, the method, LMR_F, is 
expected to obtain better timbre similarity and speech quality 
than the conventional GMM based conversion method if the 
source speech signal is segmented first before it is converted. 

5.2. Subjective speech quality tests 

Two sentences not used in training the models are taken 
to prepare four converted voice files for listing tests. These 
four files are denoted as X1, X2, Y1, and Y2. Among the four 
files, X1 and X2 are obtained with the voice conversion 
method, GMM_128 whereas Y1 and Y2 are obtained with the 
voice conversion method, LMR_F. The number "1" in X1 and 
Y1 means that the voice conversion is done between the 
speaker pair, (MSA, MSB). Similarly, the number "2" in X2 
and Y2 means that the voice conversion is done between the 
speaker pair, (MSA, FSA). These four speech files can be 
accessed at http://guhy.csie.ntust.edu.tw/VCLMR/LMR.html . 

In terms of the four converted speech files, two runs of 
listening tests are conducted to compare their speech quality. 
In the first run, X1 and Y1 are played in a random order to 
the listener, and the listener is requested to give a score. In 
the second run, the other two files, X2 and Y2, are played in a 
random order to the listener, and the listener is requested 
again to give a score. Here, 15 university students are invited 
to take part in the two runs of listening tests. Most of them 
are not familiar with the research field of voice conversion. 
As to the scores that a listener may give are -2, -1, 0, 1, and 2. 
The score, 2 (-2), means the quality of the latter played file is 
apparently better (worse) than the former played. The score, 1 
(-1), means the quality of the latter played file is slightly 



 

 

better (worse) than the former played. On the other hand, the 
score, 0, means the quality of the two played files cannot be 
distinguished. 

After listening tests, the scores given by the listeners are 
rearranged, and their averages and standard deviations are 
calculated for the two runs respectively. The results are listed 
in Table 2. According to the average scores, 0.867 and 0.467, 
it can be said that the converted voice by LMR_F will have 
slightly better speech quality than the converted voice by 
GMM_128. Therefore, the conversion method, LMR_F, can 
not only reduce conversion error but also promote speech 
quality as compared with the method, GMM_128. 

TABLE 2.  AVERAGE SCORES OBTAINED FROM THE LISTENING TESTS  

Average (std. dev.) GMM_128 vs. LMR_F 

X1 vs. Y1 0.867  (0.640) 

X2 vs. Y2 0.467  (0.704) 

 

6. Conclusion 

In this paper, a spectral mapping method based on LMR 
is studied, and a formula for determining the best value of an 
LMR matrix is derived. Then, we build a voice conversion 
system with the LMR based spectral mapping method, and 
evaluate the performance of this system experimentally. For 
building this system, parallel speech corpus is recorded, 
spectral coefficients, DCC, are adopted, and each recorded 
sentence is labeled and segmented into syllable initials and 
finals. 

According to the average conversion errors measured, it 
is found that the errors induced by our method, LMR_F, are 
less than those induced by the conventional GMM based 
method, GMM_128. The reductions of conversion error are 
7.1% and 1.5% respectively for the inside and outside tests. 
In addition, subjective listening tests are conducted to 
compare the speech quality of the converted voice files by the 
two methods, LMR_F and GMM_128. The results of the 
listening tests show that our method, LMR_F, can indeed 
obtain better speech quality than the method, GMM_128. 
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