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Abstract: 
In this paper, a different HMM structure is proposed to 

model the context-dependent spectral characteristics of a speech 
unit in order to improve synthetic speech fluency. Instead of 
using decision trees, we base on the articulatory knowledge of 
phonemes to reduce the huge amount of context combinations. 
To evaluate the proposed HMM structure, three Mandarin 
speech synthesis systems using different HMM structures are 
constructed for comparison. In these systems, prosodic 
parameters are generated with same ANN modules developed 
previously but spectral parameters are generated with HMMs of 
themselves. As to the synthesis of signal waveform, a same HNM 
(harmonic plus noise model) based synthesis module developed 
previously is used. According to the results of listening tests, the 
speech signal synthesized by using the proposed HMM structure 
is significantly more fluent than those synthesized by using other 
HMM structures. In addition, the average spectral distances 
measured between recorded and synthetic sentences show that 
the proposed HMM structure can indeed decrease the spectral 
distance as compared with other HMM structures. 

Keywords: 
Speech synthesis; HMM structure; Articulatory knowledge; 

Spectral fluency; Discrete cepstral coefficient; HNM 

1. Introduction 

Recently, HMM (hidden Markov model) have been 
adopted by many researchers to model the spectrum 
progression within a speech unit (e.g. phoneme or syllable) [1, 
2, 3, 4]. To synthesize a sentence, the trained HMMs are first 
used to generate a spectral feature vector sequence. Then, 
speech signal is synthesized with the generated spectral 
vector sequence. Speech signals synthesized with HMMs 
usual have improved intelligibility and fluency. Furthermore, 
Tokuda, et al., have developed the programs, HTS, based on 
HTK for HMM based speech synthesis [2], and provide the 
source code of HTS for other researchers to download. 
Therefore, the efforts needed to study speech synthesis can be 
reduced a lot with HTS. However, one should know that 
speech signals synthesized using HTS without GV (global 

variance) matching are generally too smooth and are 
perceived as muffled [5]. 

In this study, we decide not to use HTS. Hence, we must 
develop programs to train HMMs and to generate spectral 
feature vector sequence. This is because we intend to develop 
a speech synthesis system that is flexible for adding extra 
functions. For example, one function is timbre transformation 
to transform the synthesized speech timbre from a female 
adult to a male child [6]. Another planned function is to 
synchronously play the synthesized speech signal with its 
corresponding phonetic symbols. This function is needed 
because we will install the developed speech synthesis 
system to a humanoid robot in the future. Besides the factor, 
adding extra functions, the pitch contours generated by HTS 
are not satisfactory for Mandarin speech synthesis according 
to our experience in using HTS and other researcher’s study 
[7]. Therefore, a different method for generating pitch 
contours is adopted in our speech synthesis system. 

In the previous study [4], we have once attempted to 
model the spectrum progression within a syllable with HMM. 
The synthesized speech signal is not fluent enough. Spectral 
discontinuities may be perceived at syllable boundaries. We 
think one reason is that the unit, syllable, is too large, and the 
quantity of different contextual dependencies between 
syllables is too large to be well modeled. Therefore, in this 
paper, we take smaller speech units, i.e. syllable initial 
(consonant) and syllable final (vowel, diphthong, or nasal 
ended vowel). Also, context-dependent HMMs are grouped 
and structured according to the phonetic symbol sequence 
labeled in the transcription files. The detail of the structuring 
method proposed here will be described in Section 2. 

As a global view, the processing flow of our systems’ 
synthesis stage is depicted in Figure 1. In Block (a), the input 
text is analyzed. In Block (b), ANN models are used to 
generate each syllable’s pitch-contour parameters and 
duration value. The details are referred to [8]. In Block (c), 
the selection method will be explained in Section 2. In Block 
(d), the method proposed by Tokuda, et al., is adopted to 



 

 

 

Figure 1. The main processing flow for the synthesis stage 

compute each state’s duration in frames [1]. In Block (e), the 
method, weighted linear interpolation, proposed in a previous 
study [4] is adopted. In Block (f), the pitch frequency of each 
voiced frame is computed in terms of the pitch-contour 
parameters. In Block (g), an HNM (harmonic plus noise 
model) based signal waveform synthesis method is adopted. 
Its details are referred to [6]. 

2. Context Classification and Combination 

In speech recognition, the left-to-right structure as 
shown in Figure 2 is the basic HMM structure. Notice that 
this structure does not handle the contextual dependencies at 
the left and right boundaries. The performance (e.g. 
recognition rate) of such HMM structure would be degraded. 

 
Figure 2. Left to right HMM structure 

 
A mandarin syllable is conventionally divided into 

syllable initial (i.e. initial consonant) and final (i.e. final 
vowel cluster). Such dividing is helpful to decrease the huge 
number of left and right context combinations when syllable 
is adopted as the speech unit. However, the number of 
possible context combinations is still very large even when 
the speech units, syllable initial and final, are adopted. 

At the left side of a syllable initial, the possibly 
encountered speech unit is the final of the last syllable or 
silence. Here, we classify the possible mouth-gestures at the 
ending of a syllable final into 11 classes. The details are as 
shown in Table 1 (including “sil”, silence). By contrast, at the 

right side of a syllable initial, the speech unit encountered 
will be a syllable final. Here, we classify the possible 
mouth-gestures at the start of a syllable final into 8 classes. 
The details are as shown in Table 2. Because there are 21 
different syllable initials in Mandarin, the number of possible 
context combinations for syllable initials are 12 × 21 × 8 = 
2,016. 

TABLE 1. ENDING-GESTURE CLASSIFICATION FOR SYLLABLE FINALS 

Index 0 1 2 3 4 5 6 7 8 9 10 11
Gesture 

class a o ə e i u yu ii er n ng sil

TABLE 2. START-GESTURE CLASSIFICATION FOR SYLLABLE FINALS 

Index 0 1 2 3 4 5 6 7
Gesture 
Classes a o ə e i u yu ii

 
Similarly, at the left side of a syllable final, the possible 

encountered speech unit is the final of the last syllable or 
silence if the current syllable has no initial consonant. In this 
case, the possible mouth-gestures at the ending of a syllable 
final are classified into 12 classes as shown in Table 1. In the 
other case, the speech unit at the left side may be an initial 
consonant. Here, we classify the possible consonants into 6 
classes according their articulation positions. For example, 
the four consonants, b, p, m, f, are all articulated at the 
position, lip. Therefore, they are placed to the class, "b".  
Similarly, the four consonants, d, t, n, l, are all articulated at 
the position, alveolar ridge, and are therefore placed to the 
class, "d". In detail, the 6 consonant classes are as listed in 
Table 3. 

TABLE 3. CLASSIFICATION OF SYLLABLE-INITIAL CONSONANTS 

Index 0 1 2 3 4 5
Consonant 

Classes b d z zh j g

 
On the other hand, at the right side of a syllable final, 

the possible encountered speech unit may be silence or the 
final of the next syllable if the next syllable has no initial 
consonant. In this case, the possible mouth-gestures at the 
start of a syllable final are classified into 10 classes as shown 
in Table 1 without /n/ and /ng/. In the other case, the speech 
unit at the right side may be an initial consonant of the next 
syllable. Then, there would be 6 consonant classes as shown 
in Table 3. Since Mandarin has 37 different syllable finals, 
the number of context combinations for syllable finals is 
(12+6) × 37 × (10+6) = 10,656. 

If we plan to build an HMM for each context 
combination, then the number of HMMs to be trained is 
2,016 plus 10,656. This implies that we must record several 
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times of 10,656 syllables when preparing the training 
sentences. Therefore, it is expensive to prepare such large 
amount of training sentences, and is thus impractical to adopt 
such context dependent HMMs. One solution proposed by 
others is to cluster the HMMs into a smaller number of 
clusters by using a decision tree, e.g. HTS. However, in this 
paper, we will study an HMM structuring method to solve the 
mentioned problem. 

3. New HMM Structure 

An original HMM structure, of six states, for a syllable 
final is dependent on both left and right contexts as drawn in 
Figure 3. The symbol, FY_XY, denotes an HMM for the 
syllable final, FY, that is just preceded by the context type, 
CX, and succeed by the context type, CZ. According to 
Tables 1 and 3, the number of context types for CX is 12 + 6 
= 18. Similarly, according to Tables 1 (excluding /n/ and /ng/) 
and 3, the number of context types for CZ is 10 + 6 = 16. 
Since Mandarin has 37 different finals, FY, the number of 
context dependent HMMs for syllable finals is thus as large 
as 10,656 (18 × 37 × 16). 
 

 
Figure 3. Left and right context dependent HMM structure 

 
To decrease the cost and efforts needed for practical 

implementation (e.g. preparing large amount of training 
sentences), we hence study to restructure the HMM, FY_XZ, 
shown in Figure 3. The solution proposed here is to make the 
assumption that the front half of the six states (i.e. states 1, 2 
and 3) in Figure 3 are dependent on the context type, CX, but 
not dependent on the context type, CZ. Similarly, we also 
assume that the back half, i.e. state 4, 5 and 6, are dependent 
on CZ but not dependent on CX. Accordingly, the context 
dependent HMM, FY_XZ, in Figure 3 can be decomposed 
into the two half (half context-dependent and size) HMMs, 
GY_X and HY_Z, shown in Figures 4 and 5, respectively. 
 

 
Figure 4. Left-context dependent HMM structure for the front half 

 

 
Figure 5. Right-context dependent HMM structure for the back half 

 
Notice that the context preceding a syllable final is 

classified to 18 types. Therefore, we need 18 half HMMs, 
GY_X1, GY_X2, …, and GY_X18 (as shown in Figure 5), to 
model the front part of the syllable final, FY. Also, the 
context succeeding a syllable final is classified to 16 types. 
Therefore, we need 16 half HMMs, HY_Z1, HY_Z2, …, and 
HY_Z16 (as shown in Figure 4), to model the back part of the 
syllable final, FY. Consequently, the number of half HMMs 
required to model a syllable final is 18 + 16 = 34, and the 
total number of half HMMs needed to model 37 different 
syllable finals is 34 × 37 = 1,258. Apparently, 1,258 is much 
smaller than 10,656, the number of HMMs for modeling left 
and right context-dependent syllable finals. 

For modeling the 21 syllable initials, similar 
assumptions made to syllable finals are also adopted here. 
Since the context preceding a syllable initial is classified to 
12 types, 12 half HMMs are needed to model the front part of 
a syllable initial. Similarly, 8 half HMMs are needed to 
model the back part of a syllable initial. Consequently, the 
number of half HMMs required to model a syllable initial is 
12 + 8 = 20, and the total number of half HMMs required to 
model 21 different syllable initials is 20 × 21 = 420. 
Apparently, 420 is much smaller than 2,016, the number of 
HMMs to model left and right context-dependent syllable 
initials. 

4. Experimental Evaluation 

4.1. Training stage 

We invited a male adult to record 1,208 sentences in a 
soundproof room. The script is composed of randomly 
selected sentences from independent articles. Totally, there 
are 10,173 Mandarin syllables in these sentences. Here, the 
sampling rate adopted is 22,050 Hz. For labeling the recorded 
syllables, the package, HTK, was used first to perform forced 
alignment. Then, the software, WaveSurfer, is used to adjust 
syllable boundaries manually. 

The signal file of each syllable is sliced into a sequence 
of frames. Frame width is set to 512 sample points and frame 
shift is 128 points. For each frame, a vector of 39 spectral 
parameters, i.e. discrete cepstral coefficients (DCC) [9], c0, 
c1, …, c38, are extracted. The details for extracting DCC are 
referred to our previous work [10]. Additionally, the 
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periodicity of a frame is also saved to an extra dimension, i.e. 
c39. The value of c39 is set to 1 if the speech frame is periodic, 
and set to 0 if not periodic. In term of the dimension, c39, 
whether an HMM state is voiced or unvoiced can be decided, 
and the voicing information is used in generating pitch 
contours. In addition, since differential spectral parameters 
are useful, 40 more dimensions are added to represent delta 
DCC. After training an HMM, the average number of frames 
staying at a sate and its variance are also saved besides the 
HMM parameters. 

In this study, the front and back half-HMMs for syllable 
finals are all constructed with 3 states, and transited in the left 
to right manner as shown in Figures 4 and 5. Nevertheless, 
for syllable initials, only 2 states are used to construct each 
half-HMM. As to the number of Gaussian mixtures, just one 
mixture is placed on each state. To train the half HMMs, we 
have developed programs according to the algorithm of 
segmental K-means [11]. 

4.2. Speech synthesis processing 

Our Mandarin speech synthesis system follows the 
processing flow shown in Fig. 6. In “text analysis” block, a 
sentence is read and parsed from the input each time. Then, 
the sentence is segmented into a sequence of words by 
looking up the word dictionary, and a phonetic syllable 
symbol is obtained for each character. Next, in the block 
“generate pitch-contours and durations”, contextual data 
items are prepared for each syllable of the sentence first. 
Then, the contextual data are fed to two ANNs to generate a 
pitch-contour and a duration value for each syllable. The 
details about the ANN structure and input/output data items 
are referred to our previous work [8]. 

 
Figure 6. Main flow of the Mandarin speech synthesis system 

 
In the block, Generate frame spectral parameters, each 

syllable’s pronunciation symbol is first split into its initial and 
final parts. Then, according to the id of a unit (initial or final) 

and its left and right context, two corresponding half HMMs 
can be retrieved from the trained HMM collection, and 
concatenated to form a full HMM for the unit. Next, the 
states of the HMM will be assigned some numbers of frames 
according to the duration value generated by the ANN. The 
formula used here for assigning the numbers of frames is 
referred to a typical HMM based speech synthesis work [12]. 
Now, consider how to generate each frame’s spectral 
parameters, i.e. DCC. One commonly used method is based 
on MLE (Maximum likelihood Estimate) [12]. Here, we use a 
different generation method, called WLI (weighted-linear 
interpolation), which is proposed in a previous work [4]. 

In the block, Compute frame pitch frequency, each 
frame of a voiced unit (e.g. initial /m/ and final /a/) is 
assigned a pitch value. Here, the pitch-contour parameters 
generated by the ANN are Lagrange interpolated to compute 
a pitch value for each frame. Next, in the block, HNM signal 
synthesis, the DCC and pitch value generated for each frame 
of a unit are processed in frame order to synthesize speech 
signals. The details for signal synthesis are referred to a 
previous work [10]. 

4.3. Spectral distance measuring 

The two speech synthesis systems constructed in this 
study are denoted as SYC and SYD. In the complete system, 
SYC, the left context of a front-half HMM (e.g. GY_X in 
Figure 4) and the right context of a back-half HMM (e.g. 
HY_Z in Figure 5) are both distinguished. That is, a 
corresponding half HMM (e.g. GY_X) is constructed for 
each different context type (e.g. CX). By contrast, in the 
downgraded system, SYD, the contexts preceding or 
succeeding a syllable are disregarded. That is, the left context 
of a front-half HMM for a syllable initial is not distinguished, 
i.e. only one front-half HMM is constructed for each syllable 
initial. Also, the right context of a back-half HMM for a 
syllable final is not distinguished, i.e. only one back-half 
HMM is constructed for each syllable final. In addition, for 
the purpose of comparison, the system constructed in our 
previous study [4] is denoted as SYP. In the system, SYP, 
each different Mandarin syllable is directly modeled with one 
or a few syllable-wide HMMs. The number of HMMs 
constructed for a syllable is dependent on the syllable’s 
occurrence times in the training sentences. Here, the same 
training sentence set is used to train the HMMs for the three 
systems, SYC, SYD, and SYP.  

In terms of the three systems, we experiment to measure 
spectral distances between corresponding frames of a 
recorded sentence and a synthetic sentence. In detail, label 
files of 50 test sentences are fed one after another to each 
system to obtain their corresponding synthetic speech files. 
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Then, each pair of recorded and synthetic speech files is 
analyzed to extract two sequences of DCC vectors. Next, 
every two DCC vectors from corresponding frames are taken 
to compute a geometric distance if both frames are detected 
to be voiced. In terms of the distances computed, a global 
average distance is then computed across 50 sentences’ 
frames. As a result, we obtain the average spectral distances 
for the three systems as listed in Table 1. It is seen from Table 
1 that the DCC vectors generated by the system, SYC, are 
closest to those analyzed from the recorded sentences 
whereas the DCC vectors generated by the system, SYP, are 
the farthest among the three systems. In addition, even only 
the contextual dependency between the initial and final of a 
syllable is modeled (i.e. System SYD), the measured spectral 
distance can still be improved a lot as compared with the 
system, SYP. These indicate that the half-HMM structures 
shown in Figures 4 and 5 can indeed help to better model the 
context dependent spectra at the boundary of two adjacent 
speech units. 

TABLE 1.  MEASURED AVERAGE SPECTRAL DISTANCES 

System SYC SYD SYP 

Avg. dist. 0.633 0.640 0.732 

 

4.4. Subjective listening tests 

A short article not included to the training sentences is 
used here. This article is consisted of 70 syllables, and is fed 
to the three systems respectively to synthesize speech signal 
files. For convenience, the speech files synthesized by the 
three systems, SYC, SYD and SYP, are denoted as WC, WD 
and WP, respectively. These speech files can be accessed at 
the site, http://guhy.csie.ntust.edu.tw/hmmhalf/ . 

In terms of the speech files, WC, WD and WP, listening 
tests are conducted to compare the fluency levels of these 
files. We invite 12 persons to participate in the tests. In the 
first run, the speech files, WC and WD, are played in random 
order to each of the participant. Similarly, WC and WP are 
played in the second run whereas WD and WP are played in 
the third run. In each run, each participant is requested to give 
a score to indicate which of the two files played is more 
fluent and preferred. The scores defined here are from -2 to 2.   
Among the 5 scores, 2 (-2) means the latter (former) played 
file is apparently more fluent than the former (latter) played 
file. The score, 1 (-1), means the latter (former) played file is 
slightly more fluent than the former (latter) played file, and 0 
means the fluency level of the two files cannot be 
distinguished. 

After listening tests, the scores given by the participants 

are reordered and averaged for the three runs respectively. 
The average scores obtained are as those listed in Table 2. 
From Table 2, it is seen that the average scores for the first 
and second runs are -0.833 and -0.417. We think these score 
values will become larger (much minus) if the participants 
are all familiar with the research field of speech synthesis. 
These minus scores indicate that the speech file WC is 
perceptually more fluent than the other two files, WD and WP. 
Therefore, the half HMM structures studied here is effective 
to synthesize more fluent speech signals. As to the average 
score, 0.250, obtained in the third run, its absolute value is 
the smallest, and may indicate that the difference in fluency 
level between WD and WP is not significant. 

TABLE 2.  AVERAGE SCORES OF THE LISTENING TESTS 

Run WC vs. WD WC vs. WP WD vs. WP 
AVG -0.833 -0.417 0.250 
STD 0.718 0.900 0.866 

 

5. Conclusions 

In this paper, a different type of HMM structure, half 
(context dependent) HMM, is studied to model the context 
dependent spectral characteristics of a speech unit (syllable 
initial or final) in order to improve synthetic speech fluency. 
Instead of using decision trees to classify the huge amount of 
context combinations, we base on the articulatory knowledge 
of phonemes to decrease the number of context combinations. 

The experiments conducted to evaluate the proposed 
HMM structure include spectral distance measuring and 
listening tests. The average spectral distances measured 
between recorded and synthetic sentences show that the half 
HMM structures can decrease the average distance from 
0.732 to 0.633. In addition, according to the results of 
listening tests, the speech signals synthesized by using the 
half HMM structure are more fluent than those synthesized 
by using the other two types of HMM structures. Therefore, 
the half HMM structure is helpful to improve the synthetic 
speech fluency under the situation of insufficient training 
sentences. 
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