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Abstract: 
Pitch contours are important for synthesizing highly 

natural speech signal. In this paper, we study a new pitch- 
contour generation method. The method proposed is to combine 
ANN prediction module with global-variance matching (GVM) 
and real contour selection (RCS) modules. Here, a syllable pitch 
contour is first analyzed and then transformed via discrete 
cosine transform (DCT) to a DCT-coefficient vector. Each 
sequence of DCT vectors analyzed from a training sentence plus 
contextual parameters are then used to train the ANN weights 
and GVM parameters. In pitch-contour generation experiments, 
we measure variance-ratio (VR) values for objective evaluations. 
The modules, GVM and RCS, are shown to be helpful to 
promote VR values. In addition, in subjective evaluation, the 
pitch-contour generation method, ANN + GVM, is shown to be 
more natural than the method, ANN only. Also, the method, 
ANN + GVM + RCS, is shown to be better than ANN + GVM. 
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1. Introduction 

The naturalness level of a synthetic speech signal is 
chiefly determined by the prosodic parameters, e.g. syllable 
durations, pitch contours, intensities. Among the prosodic 
parameters, pitch contours are especially important for 
obtaining higher naturalness level. Therefore, many methods 
have been proposed to generate the syllable pitch-contours 
for synthesizing a Mandarin Chinese sentence [1, 2, 3, 4, 5, 
6]. Although HMM (hidden Markov model) is currently 
adopted by many researchers for studying speech synthesis [7, 
8], the pitch contours generated by MSD-HMM (multi-space 
probability distribution HMM) are however not satisfactory 
enough as noticed in [3, 6]. 

In this paper, we propose a new method that combines 
three techniques, i.e. artificial neural network (ANN) [1, 2], 
global variance (GV), and real-contour selection (RCS), to 
generate syllable pitch-contours for synthesizing Mandarin 

sentences. It is intended that the naturalness level of synthetic 
speech can be further promoted by combining ANN with GV 
and RCS. 

Historically, GV matching (GVM) is proposed by Toda 
and Tokuda [9] to adjust the HMM generated spectral 
coefficients in order to alleviate the phenomenon of spectral 
over-smoothing that lowers the synthetic-signal quality. Here, 
we find that the phenomenon of over-smoothing is also 
observable in ANN generated DCT (discrete cosine transform) 
coefficients that represent a pitch contour. Therefore, we 
think GVM may be helpful to promote the naturalness level 
of ANN generated pitch contours. In addition, we are 
motivated by the concept of target-speaker frame selection 
studied in [10] to improve the converted voice quality. Hence, 
we think it will be helpful to increase the naturalness level if 
an ANN generated and GV adjusted pitch contour, X, is 
further used to select a real pitch-contour (analyzed from an 
uttered syllable), Y, and then Y is used to replace X. To 
implement real-contour selection (RCS), a corresponding 
pool that collects real pitch-contours classified as of same 
context type as X must be prepared in the training stage. 

As a global view, the processing flow for the training 
stage of our system is drawn in Figure 1. First, each syllable 
of each recorded sentence is analyzed to obtain its 
corresponding pitch contour. Then, each pitch contour is 
transformed to a DCT-coefficient vector of fixed dimensions. 
Next, the sequence of DCT vectors and their corresponding 
contextual parameters are used to train the ANN based pitch 
contour generation model. Besides training ANN, the 
sequence of DCT vectors are further analyzed to obtain the 
parameters needed for GVM. In addition, each pitch contour 
represented as a DCT vector is collected to different pools 
(called real-contour pools) according to its carrying syllable’s 
context type. 

On the other hand, the global view of the processing 
flow for pitch contour generation is drawn in Figure 2. First, 
a written sentence (text) is read in. Then, by looking up a 
dictionary, the pronunciation syllable and lexical tone of each 
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Figure 1. Main processing flow for the training stage 

Chinese character is determined. In terms of the sequence of 
syllables and tones, contextual parameters are prepared for 
each syllable. Next, the contextual parameters for each 
syllable are feed to the ANN model to predict a pitch contour 
(i.e. DCT coefficients) for that syllable. In terms of the ANN 
predicted pitch contour, GV matching is performed with the 
saved GV parameters. In addition, in terms of the GV 
matched pitch contour, a nearest real pitch-contour is 
searched from the pool corresponding to that syllable’s 
context type. 
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Figure 2. Main processing flow for the generation stage 

2. Training of model parameters 

As illustrated in Figure 1, the weights of the ANN model 

must be trained, the parameters for GV matching must be 
analyzed, and real pitch-contours (i.e. DCT vectors) must be 
collected to several pools for different context types. 

2.1. Sentence recording and pitch contour detection 

In this study, we invite a male speaker to utter 810 
sentences in a soundproof room. The total number of 
syllables uttered in these sentences is 7,161. After recording, 
the sentences are first automatically labeled with the software 
package HTK. Then, the time boundaries of the syllables are 
manually checked and corrected with the software package 
WaveSurfer. 

To detect the pitch contours of the syllables, we use the 
modules of SPTK included in HTS package [8]. The 
sampling rate adopted here is 22,050 Hz, and the frame shift 
is 110 sample points. After automatic detection, we find that 
many frames’ pitch frequencies are erroneously detected. For 
example, the frequency detected for a voiced frame may be 
zero (i.e. decided to be unvoiced), half or double of the true 
frequency. Therefore, we have developed a pitch-contour tool 
program for semi-automatically or manually correcting the 
erroneously detected syllable pitch contours. 

2.2. Discrete cosine transform 

Notice that a syllable of an uttered sentence may be of 
length form 30 frames to around 80 frames. Hence, we decide 
to represent a syllable pitch-contour as a DCT coefficient 
vector with fixed dimensions. As to the number of 
dimensions, we select to use 24 dimensions. This decision is 
based on comparing some corresponding pairs of original and 
inversely transformed pitch contours with different 
dimensions. 

In details, the formula adopted here to calculate DCT 
coefficients is the DCT-I type [11], i.e. 
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where x(k) denotes the pitch frequency (in Hz) of the k-th 
frame, c(m) denotes the m-th DCT coefficient, and N is the 
number of frames. Corresponding to formula (1), the formula 
for inverse DCT transform is 
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where M denotes the number of DCT coefficients, i.e. M=24 
here. 



 

 

2.3. ANN training 

The structure of the ANN designed here is illustrated in 
Figure 3, i.e. a recurrent neural network. The input layer has 
28 nodes to input 8 contextual parameters, and the output 
layer has 24 nodes to output 24 DCT coefficients 
representing a syllable pitch contour. The 8 contextual 
parameters include: (a) tone and syllable-final class of 
previous syllable; (b) tone, syllable initial, and syllable final 
of current syllable; (c) tone and syllable-initial class of next 
syllable; (d) time-progress index. The details for the 
classification of syllable initials and finals are referred to our 
previous work [12]. In addition, the number of nodes to be 
placed in the hidden layer must be decided. We had tested it 
from 12 to 20 nodes with the first 750 recorded sentences, 
and find that 16 nodes is the best choice according to our 
experiment results. 

 8 contextual parameters 

24 dim. DCT coeff.  

Figure 3. The structure of the ANN designed here 

2.4. Analysis of GV parameters 

GV matching is originally used to adjust the spectral 
coefficients of a sequence of speech frames [9]. Here, GVM 
is however performed in the speech unit, syllable, instead of 
frame. This is because the pitch contour of a syllable is only 
represented as one DCT vector of 24 dimensions. Suppose 
that the length of a sentence is from 4 syllables to 20 
syllables. Then, only 4 to 20 DCT vectors are used to 
compute each dimension’s variance value for a sentence. To 
estimate the variance of the i-th dimension for the k-th 
sentence, the formula is 
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where n(k) denotes the number of syllables in the k-th 

sentence, ( )k
ic j  denotes the DCT coefficient of the i-th 

dimension for the j-th syllable pitch-contour, and k
im  

denotes the mean value of ( )k
ic j , j=1, …, n(k). 

Then, the global variance for the i-th dimension across 
the 750 training sentences is estimated with the formula 
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where N denotes the number of training sentences (i.e. 750 
here), and gi is the estimated global variance for the i-th 

dimension. 

2.5. Collection of real pitch-contours 

To implement real contour selection, we must prepare a 
real pitch-contour pool for each type of context combination 
in the training stage. How to define context types? First, pitch 
declining in sentence intonation is a well known phenomenon. 
Hence, we decide to divide the sequence of syllables of each 
training sentence into three segments. The syllables in the 
leading segment would have higher pitches whereas the 
syllables in the tail segment would have lower pitches. 

Secondly, we think one of the chief factors that 
influence the height and shape of a syllable’s pitch contour is 
the tone combinations of previous, current and next syllables. 
For example, let the (j-1)-th syllable of a sentence is uttered 
in tone Pj-1, the j-th syllable is uttered in tone Pj, and the 
(j+1)-th syllable is uttered in tone Pj+1. Then, the tone 
combination index for the j-th syllable is calculated as 25×Pj-1 

+ 5×Pj + Pj+1. Totally, there are 125 tone combination types 
since a syllable may be uttered in one of the five tones in 
Mandarin. If j=1, i.e. the first syllable, Pj-1 is defined to be the 
neutral tone here. Similarly, if the j-th syllable is the last 
syllable, Pj+1 is also defined to be the neutral tone. 

Considering the two factors mentioned above, we define 
3×125 = 375 context types for real pitch-contour 
classification. Therefore, we set up 375 pools to collect the 
real pitch-contour DCT vectors. By using the 750 training 
sentences, we throw each syllable’s pitch-contour DCT vector 
to one of the 375 pools according to that syllable’s context 
type. 

3. Pitch contour generation and experimental 
evaluations 

3.1. Pitch contour generation 

According to Figure 2, a sequence of syllables and 
lexical tones are determined first for an inputted Chinese 
sentence. Then, the module, ANN prediction, is used to 
predict 24 DCT coefficients representing a pitch contour for 
each syllable whose contextual parameters are fed in. After 



 

 

each syllable’s pitch contour is predicted, the pitch-contour 
DCT vectors for the sequence of syllables are then adjusted in 
the module, GV matching. For each syllable, the formula 
used to match global variance is 
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where ci denotes the i-th dimension of an ANN-predicted 
DCT vector, mi and vi denote the mean value and variance, 
respectively, for those ci across the sentence’s syllables, gi is 
as estimated in Formula (4), and w is the matching-strength 
weight whose value is set between 0 to 1.  

After GVM, the module, real contour selection, is 
executed next. Let Xj denotes the GV-adjusted DCT vector 
for the j-th syllable of the sentence. For Xj, its corresponding 
context type, mj, is determined first according to the segment 
it locates and the tone combination index of its adjacent three 
syllables as described in Section 2.5. Then, the real 
pitch-contours in the pool numbered mj, are fully searched to 
find a DCT vector Yj who is nearest to Xj in terms of a 
geometrical distance measure. Then, Yj is used to replace Xj. 

It is interesting to study the effects of the two blocks, 
“GV matching” and “Real contour selection” in Figure 2. 
Therefore, we experiment pitch contours generation here with 
six different methods that use or not use the two blocks 
mentioned, and use different weight values, w, in Formula (5). 
The symbols, MA, MB, MC, MD, ME and MF are coined 
here to denote the six methods. In details, 

MA: ANN prediction but no GVM and RCS; 
MB: ANN and GVM with w=0.33 but no RCS; 
MC: ANN and GVM with w=0.5 but no RCS; 
MD: ANN and RCS but no GVM; 
ME: ANN, GVM with w=0.33, and RCS; 
MF: ANN, GVM with w=0.5, and RCS. 

3.2. Objective evaluations 

For inside tests, the 750 recorded sentences used to train 
the ANN model and GV parameters are still used here to 
measure average geometric distances (between original and 
generated DCT vectors) and variance ratios. For outside tests, 
only the remaining 60 sentences that are not used in the 
training stage are used for measuring. The first result is that 
the measured average geometric distances do not have 
significant differences among the six methods. Therefore, the 
measure, variance ratio (VR), previously proposed for 
comparing converted-voice quality [13], is adopted here to 
compare the six methods. The formula to calculate VR is 
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where L denotes the number of syllable-final classes in 

Mandarin (here L =36), D denotes the number of dimensions 

in a DCT vector, ˆ d
kσ  denotes the variance calculated from 

the d-th dimension of the generated pitch-contour DCT 
vectors that superimpose the k-th syllable-final class, and 

d
kσ  denotes the variance calculated from the d-th dimension 

of the analyzed (from recorded sentences) DCT vectors that 
superimpose the k-th syllable-final class. Notice that D is 23 
here because the coefficient, c0, in an ANN generated DCT 
vector is not modified by GVM and not replaced by RCS. 

The measure VR values for the six methods are depicted 
in Figure 4. According to these VR values, it can be found 
that the pitch-contour DCT vectors generated by ANN 
(method MA) indeed have very low VR values just around 
0.1. The VR values would be significantly increased if GVM 
(method MB or MC) or RCS (method MD) is applied to the 
ANN generated DCT vectors. In addition, the VR values 
become further higher if GVM and RCS are both applied in 
cascading (method ME or MF). Notice that the trend just 
mentioned is consistently seen in the two curves of Figure 4 
for both experiments using inside and outside sentences. 
Therefore, GVM and RCS are very effective to improve the 
phenomenon of over-smoothed DCT coefficients. 
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Figure 4. VR values measured under different generation methods 

3.3. Subjective evaluations 

To achieve higher naturalness level, a generation method 
should generate pitch-contours that are perceived as having 
correct tones and sufficient pitch range and curvature. Here, 
we evaluate the six generation methods by listening tests. 



 

 

Two groups of persons are invited to participate in the 
listening tests. The first group consists of 11 persons who 
have experience in speech signal processing. In contrast, the 
second group consists of 11 persons too but they have no 
experience in speech signal processing.  

For preparing synthetic speech files, three short articles 
are randomly selected, and each of the six generation 
methods (from MA to MF) is used to generate the syllable 
pitch-contours for each article, respectively. Then, the 
generated pitch contours by the six methods and the other 
prosodic parameters (syllable durations and intensities) are 
fed to the signal synthesis module to synthesize 6 speech 
signal files for each article [14]. In addition, we have 
converted the generated pitch contours from a male’s pitch to 
a female’s pitch by using a method commonly adopted in 
voice conversion [10, 13]. Then, the converted pitch contours 
and previously trained spectral HMM using this female’s 
uttered sentences are used to synthesize that female’s speech 
signal files. Hence, each of the six generation methods has 6 
(3 articles × 2 speakers) speech files synthesized. 

Here, listening tests are executed by requesting each 
participant to compare two played synthetic speech files and 
then give a score to indicate which is more natural. If the 
former (latter) is apparently natural than the latter (former), 
the score, 1 (5), should be given. If the former (latter) is 
slightly natural than the latter (former), the score, 2 (4), 
should be given. Otherwise, the score, 3, is given to indicate 
that the two played speech files cannot be distinguished in 
naturalness level. 

Notice that the combination number for taking any two 
methods from the six generation methods is 15, which require 
too many efforts to execute listing tests. Hence, we select 
only five method pairs for listening tests, i.e. (a) MA vs. MB, 
(b) MB vs. MC, (c) MA vs. MC, (d) MB vs. ME, and (e) MC 
vs. MF. For each method-pair, each of the participants would 
listen to 6 synthetic speech file pairs in a sequence, and give a 
score for each speech file pair. After listening tests, the scores 
that are collected from comparing a same pair of speech files 
and given by the participants from a same group are averaged. 
Then, we consider the average score as a voting, i.e. we add 
one vote to the former generation method if the average score 
is less than 3, and add one vote to the latter method if the 
average score is greater than 3. Since there are 6 speech files 
synthesized for each of the six generation methods and the 
scores given by the two participant groups are averaged 
separately, the total number of votes for the comparison of 
each method pair is 12. As our experiment results, the votes 
obtained by the two methods of each method pair are 
depicted in Figure 5. 

According to the voting results shown in Figure 5, it can 
be seen that the votes for MA vs. MB are 2 vs. 10, the votes 
for MB vs. ME are 3 vs. 9, and the votes for MC vs. MF are 4 

vs. 8. Therefore, the method MB (ANN and GVM) will 
generates more natural pitch contours than MA (ANN only). 
In addition, the module, RCS, is shown to be effective in 
raising the naturalness level according to the voting results of 
MB vs. ME and MC vs. MF. On the other hand, the votes for 
MB vs. MC are 6 vs. 6 and the votes for MA vs. MC are 7 vs. 
5. Therefore, there is no significant difference in naturalness 
level between MB and MC that only differ in GVM weigh 
values. 

 
Figure 5. Voting results for the comparisons of the 5 method pairs 

4. Concluding remarks 

We find that the phenomenon of over-smoothing exists 
in the ANN generated DCT coefficients that representing a 
pitch contour. Therefore, in this paper, we attempt to promote 
the naturalness level of ANN generated pitch contours by 
cascading two more processing modules, i.e. GVM and RCS, 
to the ANN prediction module. 

In objective evaluation, VR is used to measure the level 
of over-smoothing. According to the measured VR values, it 
is found that both modules, GVM or RCS, are helpful to raise 
VR values significantly. Hence, GVM and RCS can indeed 
help to alleviate the problem of over-smoothed DCT 
coefficients. Moreover, the VR value will be further raised if 
both GVM and RCS are cascaded. 

In subjective evaluation, we select five pairs of pitch 
contour generation methods to compare their naturalness 
level. After listening tests, the scores given by the participants 
are averaged respectively for different speech file pair and 
participant groups. Then, each average score is considered as 
a voting of naturalness level. Consequently, we find that the 
method MB (ANN and GVM) is voted to be better than MA 
(ANN only). In addition, the method ME is voted to be better 
than MB, and the method MF is voted to be better than MC. 
That is, RCS as used in ME and MF is indeed effective for 
raising the naturalness level. 
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