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In this paper, a voice conversion approach that combines two distinct ideas is pro-

posed to improve the converted-voice quality. The first idea is to map spectral features, 
e.g. discrete cepstrum coefficients (DCC), with segmental Gaussian mixture models 
(GMMs). That is, a single GMM of a large number of mixture components is replaced 
here with several voice-content specific GMMs each consisting of much fewer mixture 
components. In addition, the second idea is to find a frame, of spectral features near to 
the mapped feature vector, from the target-speaker frame pool corresponding to the seg-
ment class as the input frame belongs to. Both ideas are intended to alleviate the problem 
encountered by a traditional GMM based conversion method, i.e. converted spectral en-
velopes are usually over smoothed. To apply the first idea to implement an on-line voice 
conversion system, we have proposed an automatic GMM selection algorithm based on 
dynamic programming (DP). Furthermore, as pointed out by previous researchers, map-
ping with a single selected Gaussian probability density function (PDF) instead of a 
combination of several Gaussian PDFs is helpful to obtain better converted-voice quality. 
Therefore, we have also proposed a Gaussian PDF selection algorithm and integrated it 
into our system. As to the implementation of the second idea, an algorithm based on DP 
is adopted which will consider both frame matching and connecting distances. For evalu-
ating the performance of the two ideas studied here, three voice conversion systems are 
constructed, and used to conduct listening tests. The results of the tests show that the 
system with the two ideas combined can indeed obtain much improved voice quality be-
sides improvement in timbre similarity.       
 
Keywords: voice conversion, Gaussian mixture model, frame selection, discrete cepstrum 
coefficients, dynamic programming  
 
 

1. INTRODUCTION 
 

The research of voice conversion is to develop an effective method for converting 
one person’s voice to a voice that resembles a particular person [1, 2]. Historically, the 
GMM based voice conversion method was first introduced by Stylianou [3]. Afterward, 
many researches had tried to improve this method by considering one or two related is-
sues. The related issues include spectral over-smoothing found in converted spectrums 
[4-7], spectral discontinuities between some adjacently converted frames [4, 5, 7], pros-
ody conversion [8, 9], and other minor issues. Although previous researchers had already 
proposed their methods to improve voice-conversion performances, these issues, howev-
er, need more investigations in order to have various kinds of solution methods to satisfy 
different requirements by different application developers. Possible requirements include 
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(a) voice quality first with acceptable similarity; (b) voice similarity first with acceptable 
quality; (c) voce quality compromised with implementation cost, etc. We know that the 
issue, spectral over-smoothing, had been tackled with at least two kinds of methods, 
global variance (GV) [6, 7] and dynamic frequency warping (DFW) [4, 5]. Additionally, 
the methods based on DFW are intended to remedy a weak point of the GV based meth-
ods, i.e. the correlation between the source and target parameters is low [5]. In this paper, 
we also study the issue, spectral over-smoothing, but with a different approach, segmen-
tal GMM plus target frame selection. The advantages of our approach include (a) simpler 
in concept; (b) easier to implement (hence saving efforts or money); (c) compromised 
processing-time latency (e.g. 30 frames) between DFW (1 frame) and GV (utterance 
level); (d) effective for improving the converted-voice quality (the signal quality of the 
converted voice). 

If the converted spectrums are over smoothed, the converted voice will be perceived 
of some distortions and the voice quality will be decreased apparently. In addition, some 
adjacent source frames’ converted spectra may become discontinuous when the issue of 
spectral over-smoothing is tackled by using only the most probable Gaussian PDF (or 
mixture component) to map the source spectral coefficients [10]. What is spectral over- 
smoothing? We illustrate it by the two curves of magnitude-spectrum envelopes (spectral 
envelopes) shown in Fig. 1. The dot-lined curve represents an envelope of a recorded 
target (target-speaker) frame whereas the solid-lined curve represents an envelope of a 
converted frame. Apparently, the formants, F2, F4 and F6, of the converted envelope 
become much broader (i.e. bandwidth become larger) as compared with the ones of the 
target envelope. Also, the depths of peak-to-left-valley of the mentioned formants are 
considerably decreased for the converted envelope. Therefore, a converted envelope that 
has the two phenomena observed is attributed as over-smoothed. 

 

 
Fig. 1. An example of an over-smoothed spectral envelope. 

 

The cause resulting to over-smoothing we think is the summation across too many 
Gaussian PDFs (usually 128 PDFs) in a GMM based mapping function [3], 
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where x denotes a feature vector of the source speaker, y denotes the converted feature 
vector for the target speaker, M is the number of Gaussian PDFs, wm is the weight of the 
mth mixture component, and  and  represent the sets of mean vectors and covariance 
matrices, respectively. To solve the problem of spectral over-smoothing, we think re-
ducing the number of Gaussian PDFs, M, in the mapping function is necessary. Never-
theless, the probability density function (PDF) of the trained GMM would become 
coarse when the number of mixture components is directly decreased. Therefore, we 
consider to segment each of the training sentences into a sequence of speech segments, 
and to group these speech segments into several classes. For example, a speech segment 
may be a phoneme, a syllable, or an acoustically defined sub-syllable [11]. After seg-
mentation, the signal frames grouped to a same class are taken to train a corresponding 
GMM with fewer Gaussian PDFs (e.g. 8 PDFs). Then, this GMM is dedicated to convert 
the source signal frames recognized to belong to its corresponding class. In this way, the 
GMM based mapping function, i.e. Eq. (1), can be applied with fewer mixture compo-
nents. That is, a complicated GMM is now replaced with multiple simpler GMMs, and 
each GMM is dedicated for converting the signal frames recognized to belong to its cor-
responding class. 

In this paper, we study voice conversion for Mandarin Chinese, and Mandarin Chi-
nese is a syllable prominent language. Therefore, we treat each syllable of a labeled 
training sentence as one segment if the syllable has no initial consonant or has just un-
voiced initial consonant, or as two segments (i.e. the voiced initial consonant and syllable 
final) if the syllable is started with a voiced consonant. Next, each segment is grouped to 
one of the 39 classes, including 4 classes of voiced initial consonants (i.e. /m/, /n/, /l/, /r/) 
and 35 classes of syllable finals. In Mandarin Chinese, a syllable final is a vowel nucleus 
consisting of one to three vowels plus a possible nasal ending. In details, the 35 types of 
syllable finals are listed in Table 1 for reference. For each of the 39 classes, a corre-
sponding GMM will be trained from the segments grouped to. After training, the 39 
GMMs are used for on-line voice conversion. Nevertheless, there is a problem that must 
be solved beforehand. The problem is how the right class that an input frame belongs to 
can be picked out? For this problem, we have developed an automatic selection algo-
rithm based on dynamic programming. This algorithm will be described in section 3.1. 

 

Table 1. The 35 types of syllable finals in Mandarin Chinese. 
Structures Members 

Single vowel a o ə u i y щ  
Diphthong ua au ia ai uo ou ie ei 
Triphthong uai iau iou uei    ye 
Nasal ended (n) an uan ən uən ien yen in yn 
Nasal ended (ŋ) aŋ iaŋ uaŋ əŋ oŋ yoŋ iŋ  
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Besides using multiple segmental GMMs to reduce the number of mixture compo-
nents, we advanced furthermore to use only one Gaussian PDF for mapping a source 
spectrum into its converted spectrum in order to help alleviate the problem of over- 
smoothed converted spectrum. Nevertheless, two adjacent source frames’ converted 
spectrums may become discontinuous and result in artifact sounds. Therefore, we studied 
to design a DP based algorithm to consider both the likelihood (when taking a particular 
Gaussian PDF) and the spectral continuity (between two adjacent frames) simultaneously 
for a sequence of signal frames. This algorithm will be described in section 3.2. 

In this paper, we not only improve the method, segmental GMMs, presented in our 
previous work [12], but also extend it by adding an essential processing step, frame se-
lection, to further alleviate the problem of spectral over smoothing. By frame selection, 
each converted feature vector is replaced with a real (i.e. not converted) feature vector 
analyzed from a target frame in order to improve the converted-voice quality. In fact, the 
idea of frame selection is proposed previously by Dutoit, et al. [13]. In that paper [13], 
the feature vector of a source frame is mapped with a conventional GMM, and then a 
target frame is searched, in terms of the mapped feature vector, with a DP based algo-
rithm. Here, we map the feature vector of a source frame with a segmental GMM, and 
then search for a target frame with a developed DP algorithm. The detail of this algo-
rithm will be explained in section 3.3. We think that the two steps, spectral mapping and 
frame selection, are not independent. A better spectral mapping method would help the 
module, frame selection, to find out a more appropriate target frame. By cascading the 
two steps, segmental GMM based spectral mapping and target frame selection, we have 
built an on-line voice conversion system. Then, this system and two other systems with 
different option setting are used to conduct listening tests.  

This paper is structured as follows. Section 2 first describes the voice data recorded 
and the steps of the training stage to build a voice conversion system according to our 
approach. Section 3 then describes the steps of the voice conversion stage for our system 
to convert a source speaker’s utterance. Section 4 presents results from subjective and 
objective evaluation experiments, demonstrating that our approach can provide signifi-
cantly improved voice quality. Finally, the main conclusions of this work are summa-
rized in Section 5. 

2. TRAINING PROCEDURE 

As an overview, the processing flow for the training stage of our voice conversion 
system is as that drawn in Fig. 2. Three persons are invited to record 375 parallel sen-
tences in a soundproof room. The sampling rate is 22,050Hz. Among the three persons, 
two are males, denoted as MA and MB, and the other one is a female, denoted as FA. In 
this study, MA is treated as the source speaker whereas MB and FA are treated as the 
target speakers, respectively. Therefore, the two voice conversion tasks here are to con-
vert the voice of MA into the voice of MB or FA. 
 
2.1 Labeling and Grouping 
 

First, the software package, HTK (HMM tool kit) [14], was used to execute forced 
alignment, i.e. automatically labeling the syllable boundaries. Since many errors are 
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found in the labeled results, manual checking and correcting of the syllable boundaries 
are thus required. Here, we used the software, WaveSurfer [15], to edit the labels and 
boundaries. Also, a boundary between syllable initial and final is placed for a syllable of 
a voiced initial (consonant). Then, according to the information of syllable boundaries 
and phonetic symbol, each syllable’s signal was extracted and saved into a separate file 
which is named with sentence number, syllable number, and phonetic symbol. As a total, 
2,926 syllables were extracted from the 375 recorded sentences of a speaker. Next, the 
syllables from the first 350 sentences are grouped into 39 classes according to the pho-
netic symbol and boundary information from the filename of each saved signal file. 
 

Training 
Segmental 

GMMs 

Labeling and 
segmenting

Training sentences of 
source speaker 

Training sentences of 
target speaker 

Labeling and 
segmenting

Grouping into 
39 classes 

Grouping into 
39 classes 

DTW 
alignment 

Estimating 
DCC 

Estimating 
DCC

Param. of 39
GMMs 

Estimating 
pitch param.

Estimating 
pitch param. 

Pitch param. 
of target 

Pitch param. 
of source 

Framing Framing 

Target frames 
of 39 classes

 
Fig. 2. Processing flow for the training stage. 

 
2.2 Estimation of Discrete Cepstrum Coefficients 
 

There are several methods proposed for estimating a signal frame’s spectral enve-
lope. The method, STRAIGHT [16], is very accurate in its estimated spectral envelope 
but it requires a large amount of computations and cannot be used to implement a real- 
time system currently.  

Therefore, in this study, we adopt the spectral-envelope estimation method, discrete 
cepstrum [17, 18], and use the estimated discrete cepstrum coefficients (DCC) as the 
spectral features. For each signal frame, the DCC estimation scheme proposed in a pre-
vious work [18] is used to calculate 40 DCC. In that scheme, a mel-like frequency scale 
is adopted. Here, a frame’s width is 512 sample points, and adjacent frames are placed 
110 points (5 ms) apart. In addition, the estimated DCC of each target frame are stored 
with its frame-sequence number to one of the 39 target-frame pools according to the 
segment class that this frame belongs to. 
 
2.3 Training of Segmental GMMs 
 

After the block, “grouping into 39 classes”, in Fig. 2 is executed, there would be 39 
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classes of segments. For each class, a GMM of 8 mixture components was trained from 
those speech segments grouped to that class. Such a GMM obtained is hence termed a 
segmental GMM. 

Here, a parallel corpus is used. Each source (source speaker) syllable and its corre-
sponding target syllable were time aligned first with dynamic time warping (DTW) as 
indicated in the block, “DTW alignment”. Then, the DCC computed from a source frame 
was jointed with the DCC computed from the aligned target frame. With the jointed 
vectors of DCC, the training method based on maximum likelihood estimate was used to 
train a GMM for each class [19]. 
 
2.4 Pitch Parameters 
 

A pitch detection method based on both autocorrelation and absolute magnitude 
difference function (AMDF) is used to detect the pitch frequency of a signal frame [20]. 
To prevent some unvoiced frames from being incorrectly detected as voiced, we also 
calculate the value of zero-crossing rate (ZCR) for each frame and use ZCR to determine 
if a frame is unvoiced beforehand. Then, the pitch frequencies detected from a speaker’s 
utterances are collected to compute their average and standard deviation, which are the 
pitch parameters used in this study. 

3. CONVERSION PROCEDURE 

The procedure proposed here for converting voice is as the processing flow drawn 
in Fig. 3. When a spoken sentence with unknown content is inputted, it will be sliced 
into a sequence of frames first with the frame width and shift as given in section 2.2. 
Then, the pitch frequency of each frame is detected in the left flow of Fig. 3 with the 
method mentioned in section 2.4. When a frame is detected to be unvoiced, the four gray 
colored blocks in Fig. 3 are bypassed directly, which means that pitch adjusting is not 
needed and the spectral parameters, DCC, are not converted. On the other hand, when a 
frame is detected to be voiced, its pitch is simply converted with the equation,  

( )
( ) ( )

( )
( )

y
y x

t tx
q p

 


   ,    (2) 

where pt is the detected pitch frequency, (x) and (x) are the average and standard devia-
tion of the source speaker’s pitch frequencies, and (y) and (y) are the average and 
standard deviation of the target speaker’s pitch frequencies. 

In the right flow of Fig. 3, the input frames are processed one after another basically. 
Nevertheless, in the block, “Selecting a GMM”, we propose a selection algorithm that 
processes every 30 voiced frames in a batch. With this algorithm, the correct GMM (or 
its nearby GMM sometimes) can be picked out from the 39 GMMs for each frame. Then, 
in the block, “Mapping with single PDF”, only one Gaussian PDF of the selected GMM 
is used to map the DCC in order to alleviate the problem of spectral over-smoothing. 
Nevertheless, the Gaussian PDF selected for mapping is not always the most probable 
one. This is because spectral continuity between adjacent converted frames must also be 
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considered to prevent artifact sounds from being generated. For the problem of Gaussian 
PDF selection, we have developed a DP based algorithm that is different from the one 
studied by previous researchers [6]. Hence, in this block, a sequence of voiced frames 
bounded with left and right unvoiced frames are processed in a batch. Next, in the block, 
“selecting target frames”, the sequence of voiced frames is also processed in a batch with 
another developed DP algorithm. Similarly, spectral continuity between adjacently se-
lected target frames must also be considered besides the spectral matching distance be-
tween the feature vector of the converted input frame and the feature vector of a target 
frame. Finally, in the jointed block, “HNM based speech synthesis”, speech signals are 
re-synthesized using a harmonic plus noise model (HNM) based method [21, 22]. 

 

HNM based 
speech synthesis

Pitch 
adjusting 

Selecting a 
GMM

Mapping with 
single PDF 

Estimating 
DCC

Converted 
voice

Detect pitch 
freq. 

Unknown spoken 
sentence 

Framing 

Selecting 
target frames 

 
Fig. 3. Processing flow for the conversion stage. 

 

3.1 GMM Selection 
 

Since the content of the input speech is unknown, which one of the 39 GMMs 
should be selected for mapping each input frame’s DCC becomes a problem that must be 
solved. In general, this is a problem of speech recognition. Nevertheless, it is not so se-
rious because some frames are assigned with incorrect but nearby GMMs are tolerable. 

Here, we use the 39 segmental GMMs trained to take the role of HMM (hidden 
Markov model) usually used for speech recognition. In addition, we notice that it is rare 
for a person to utter more than 2 different segments (syllables) within a very short time 
interval, e.g. 150 ms, under an ordinary speaking rate. Therefore, we decide to select 
GMMs for every 30 successive voiced frames (spanning 150ms of time) in a batch. Ac-
tually, we have experimented to inspect the differences in the numbers of segments se-
lected when setting the batch length to 20, 30, and 40, respectively. It is found that the 
batch length, 30, is indeed a better choice. Then, only one or two of the 39 GMMs will 
be picked out for a batch of 30 voiced frames. Here, we have developed a DP based al-
gorithm that selects one or two GMMs according to the criterion of maximum likelihood. 
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Let the probability that the tth input frame’s DCC are generated by the sth GMM be 
Gt(s). Hence, 

 ( ) ( )

1

( ) = ( ) ;  ( ),  ( ) ,
M

x xx
t m t m m

m

G s w s N x s s


     (3) 

where wm(s) is the weight of the mth mixture component, and xt is the vector of DCC for 
the tth frame. In addition, let R(t, s) be the logarithmic likelihood (i.e. in logarithmic 
scale) that the frames from time 1 to t are all generated by the sth GMM. Here, R(t, s) is 
intended to record the probability that the voiced part spanning the frames from time 1 to 
t is within the time interval occupied by a syllable of the syllable-final type correspond-
ing to the sth GMM. In contrast, let D(t, s) be the logarithmic likelihood that the frames 
from time 1 to t are generated by two GMMs and the tth frame is generated by the sth 
GMM. Here, D(t, s) is intended to record the probability that the voiced part spanning 
the frames from time 1 to t is across two adjacent syllables. In terms of these definitions, 
we can derive the two recursive formula, 

 ( , ) log ( ) ( 1, ),tR t s G s R t s      (4) 

   
0 39,

( , ) log ( ) max max ( 1, ) , ( 1, ) ,t
v v s

D t s G s R t v D t s
  

     
 

   (5) 

where the boundary values are D(1, s) = 1030 and R(1, s) = log(G1(s)), s = 0, 1, …, 38. 
In Eq. (4), when the voiced part within a syllable is expanded with a further frame, i.e. 
the tth frame, the probability, R(t, s), of the expanded part can be calculated in terms of 
the probability, R(t1, s), of the within-syllable part before the expansion. 

In Eq. (5), the cross-syllable voiced part may be formed by concatenating the tth 
frame as a newly spanned frame by a syllable of the sth syllable-final type which is dif-
ferent from the syllable-final type of the preceding syllable that spans the frames from 
time 1 to t1. In this scenario, we should have the formula, 

   
0 39,

( , ) log ( ) max ( 1, ) ,t
v v s

D t s G s R t v
  

      (5a) 

derived. As an improvement to the work [12] for practical implementation, here we place 
a constraint that the time index t must be of a value greater than 5 and less than T+25 
on applying Eq. (5a) where T is the length of a batch of voiced frames. This constrain is 
intended to prevent short syllable-segments of lengths less than 5 frames from being se-
lected by the GMM selection algorithm. If this constraint is not placed, it may occur that 
a sequence of frames coming from a syllable is incorrectly divided into too many short 
segments, which may possibly cause spectral discontinuities at segment boundaries and 
lower the quality of the converted speech.    

In the other scenario, the cross-syllable voiced part of t frames in length may be ob-
tained by spanning the tth frame with the right-side syllable of an already formed cross- 
syllable voiced part. Hence, the formula, 

 ( , ) log ( ) ( 1, ),tD t s G s D t s      (5b) 



VOICE CONVERSION COMBINING SEGMENTAL GMM WITH FRAME SELECTION 

 

617

 

is derived. When the two scenarios are put together, the formula, Eq. (5), is thus derived. 
Next, when we advance to the last frame of a batch of T frames, we can decide whether 
this batch of T frames is spanned by a single syllable or spanned by two syllables ac-
cording to their likelihoods. In detail, the maximum likelihood, A(T) , is calculated as 

    
0 39 0 39

( ) max max ( , ) , max ( , ) ,
v v

A T R T v D T v
   

    (6) 

where the time length T is set to 30 in this study. In terms of Eqs. (4)-(6), we can calcu-
late the maximum likelihood, A(30), and then back track to find the sequence of GMM 
indices that are best for assigning to the batch of 30 voiced frames. 
 
3.2 Mapping with Single Gaussian PDF 
 

Mapping an input frame’s DCC with a single Gaussian PDF is meant that the sum-
mation and the weighting term of Eq. (1) are removed. That is, the converted DCC vec-
tor, y, is calculated as, 

    1( ) ( ) ( ) ( )( ) ( ) ,k y yx xx x
k k k ky F x x 


           (7) 

where x is the input frame’s DCC and F k(x) denotes the mapping function using the kth 
Gaussian PDF. 

Here, we have improved the DP based algorithm for selecting Gaussian PDFs that is 
developed in the work [12]. By using the DP based algorithm, we can find a sequence of 
Gaussian PDFs that will minimize the cumulated inter-frame distances between adja-
cently converted DCC vectors under a likelihood bound defined by the threshold param-
eter, H, in Eq. (8). Of a minimized cumulated distance, the selected sequence of Gaussi-
an PDFs is believed to generate converted voice most probably without spectral discon-
tinuity. The details of the improved algorithm are as the following. Let the index of the 
GMM selected by section 3.1 for the tth frame be I(t). Denote the mapping function us-
ing the kth Gaussian PDF as ( ) ( )k

I t tF x . In addition, let C(t, k) represent the cumulated  
distance from time 1 to time t and the index of the Gaussian PDF used at time t be k. 
Then, the derived recursive formula,     

 ( ) ( 1) 1
0 ,

( 1, ( 1)) 

( , ) min ( ), ( ) ( 1, ) ,

m

k m
I t t I t t

m M
U t I t H

C t k dist F x F x C t m 
 

  

    
   (8) 

( ) ( )

) ( )(

1

( ) ( ; ( ), ( ))
( , )

( ) ( ; ( ), ( ))

x xx
m t m m

m M
x xx

i t ii
i

w s N x s s
U t s

w s N x s s






 


 
 

is used to execute dynamic programming, where dist(, ) is a geometric distance meas-
ure for DCC, H is a probability threshold who’s value is experimentally set to 0.2, and 
Um(t, s) denotes the posterior probability of the mth component among the mixture com-
ponents of the GMM indexed with s given that the DCC vector observed at time t is xt. 
The probability term, Um(t, s), is introduced here (not used in the work [12]) to measure 
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(10) 

the percentage that the mth mixture component will contribute to the probability that xt is 
seen under the sth GMM. If no Gaussian PDF is found to have probability greater than H 
in Eq. (8) (this situation seldom occurs), the Gaussian PDF belonging to the sth GMM 
and having the maximal probability is then selected instead to ensure that Eq. (8) can 
proceed. Notice that we have experimented to measure average cepstral distances for 
many combinations of M and H values (M varied from 8 to 16 and H varied from 0.1 to 
0.5). Then, appropriate values for M and H are taken accordingly. At time 0, C(0, k), 0  
k < M, are all set to have the value, 0. Finally, at time T, the minimum cumulated dis-
tance B(T) is computed as 

 
0 , ( , ( ))

( ) min ( , ) .
kk M U T I T H

B T C T k
  

    (9) 

In terms of Eqs. (8) and (9), the minimum cumulated distance can be obtained. Also, the 
sequence of Gaussian PDF indices for the frames from time 1 to T can be obtained 
through backtracking. Here, T is the time length of a sequence of voiced input frames. 
 
3.3 Target Frame Selection 
 

Let y1, y2, …, yT be a sequence of converted DCC vectors obtained from mapping 
with singe Gaussian PDF, i.e. the method presented in Section 3.2. Notice that each vec-
tor, yt, of the sequence may be somehow distorted during the mapping from xt to yt. To 
improve the quality of the converted voice, we are thus motivated, by Dutoit, et al. [13], 
to replace yt with a real (not converted) DCC vector, zt, analyzed from a target frame 
belonging to the segment class indexed as I(t). To select a frame, zt, from a group of 
frames corresponding to a segment class, we should consider not only the matching dis-
tance, dist(yt, zt), but also the connection distance, dist(zt-1, zt), in order to prevent spectral 
discontinuity from occurring. Besides the connection distance adopted in the work by 
Dutoit, et al. [13], we add another term of dynamic-spectral distance to reflect a dynam-
ic-spectral change, yt = yt  yt-1, between a pair of adjacently converted frames, to its 
corresponding pair of real target frames, Δzt = zt  zt-1. This dynamic-spectral distance is 
useful to slightly improve the quality of the converted speech according to our experi-
ments. Consequently, we have developed another DP based algorithm to do frame selec-
tion.    

As the first step, for each converted DCC vector, yt, K target-frame DCC of the least 
distances to yt are found by fully searching the frame group corresponding to the seg-
ment class indexed as I(t). Here, K is set to 24 according to the results of the experiments 
measuring VR (variance ratio defined in Eq. (14)) values with K varied from 12 to 36. 
Next, let Q(t, i) denote the best cumulated distance from time 1 to t and the index of the 
target-frame DCC selected at time t be i, i.e. the ith frame of the K found frames for re-
placing yt. Then, the recursive formula, 

     11 1
0

( , ) min ( 1, ) , + , , ,j i i j i
t t t t t tt t

j K
Q t i Q t j dist z z dist y y z z dist y z    

         
  

 
is used to execute dynamic programming, where  is a weighting factor for both connec-
tion and dynamic-spectral distances, and zt

i denotes the ith target-frame DCC candidate 
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of the K found candidates at time t for replacing yt. Here,  is set to 1.5 according to the 
results of the experiments measuring VR values with  varied from 0.25 to 6. As men-
tioned in the work [13], a trick to obtain more natural spectral connection is to dynami-
cally reset the value of  to 0 if zj

t-1 and zi
t are checked to be adjacent frames coming from 

a same utterance. This trick is also adopted here, and is extended by accepting the case 
that zj

t-1 and zi
t come from a same utterance and have just one another frame in between. 

Finally, at time T, the minimum cumulated distance W(T) is computed as 

 
0

( ) min ( , ) .
j K

W T Q T j
 

    (11) 

In terms of Eqs. (10) and (11), the minimum cumulated distance can be obtained. Also, 
the sequence of target-frame indices from time 1 to T can be backtracked. Then, the real 
target-frame DCC, zi

t, corresponding to the indices backtracked are taken to replace the 
converted-frame DCC, yt, t = 1, 2, …, T. Here, T is the time length of a sequence of 
voiced frames. 
 
3.4 HNM Based Speech Synthesis 
 

In HNM, the spectrum of a voiced frame is divided into the lower-frequency har-
monic part and the higher-frequency noise part [21-23]. The frequency that the two parts 
are divided according to is termed the maximum voiced frequency (MVF). In the origi-
nal work [21], a method is provided to dynamically detect each frame’s MVF. Here, to 
simplify the synthesis processing, we just use the static MVF value, 6,000Hz, across all 
voiced frames. 

Suppose the ith and (i+1)th frames are both voiced and have Li and Li+1 harmonic 
partials, respectively. To synthesize a signal sample for the tth sampling point between 
the ith and (i+1)th frames, we first derive the frequencies, fk(t), and amplitudes, ak(t), of 
the harmonic partials for this sampling point with linear interpolation. The detail is, 
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where N is the number of sampling points between two adjacent frames, L is the larger 
one of Li and Li+1, and 

i
kf  and 

i
ka are the frequency and amplitude for the kth harmonic 

partial of the ith frame. The value of 

i
kf

 

is simply computed as k  qi where qi is the con-
verted pitch frequency for the ith frame. As to 

i
ka , its value is derived from the converted 

vector of DCC. The detail of the derivation is referred to a previous work [18]. Here, we 
directly set 

i
ka = 0, k = Li + 1, …, Li+1, if Li is less than Li+1. Then, the harmonic signal, 

h(t), for the tth sampling point is computed as 

1
( ) ( ) cos( ( )),  0 ,

( ) ( 1) 2 ( ) / 22,050,

L
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where k(t) denotes the cumulated phase on time t for the kth harmonic partial and 22,050 
is the sampling frequency. k(1) is defined to be k(N1) of the last frame to keep con-
tinuity of phase. If i = 0, i.e. there is no last frame, the value of k(1) is then set ran-
domly. 

For the noise signal, we adopt a synthesis method recommended in the literature of 
HNM [21]. The method is to synthesize the noise signal also as a summation of sinusoi-
dal components as expressed in Eq. (12). Nevertheless, the sinusoids here are all of fre-
quencies greater than the MVF value, the phase increment of each sinusoidal is fixed and 
not changed with time, and the gap between two adjacent sinusoids is fixed to 100Hz. 
For a detailed description of the method, the previous works [21, 22] are referred to. 

4. EXPERIMENTAL EVALUATIONS 

For evaluating the conversion method proposed here, we have constructed three 
kinds of voice conversion systems, named SOG, SLG, and SLGF, respectively. In the 
system SOG (system using original GMM for mapping), a single GMM of 128 mixture 
components are trained with the 350 training sentences. Then, the mapping function, Eq. 
(1), is used to convert the DCC of each input frame. In the system SLG (system using 
selected GMM and selected single Gaussian PDF for mapping), we trained 39 segmental 
GMMs instead of a single GMM. The number of mixture components for each segmen-
tal GMM is set to 8, and the value for the probability threshold H is set to 0.2. Then, the 
methods presented in Sections 3.1 and 3.2 are used to select segmental GMM and single 
Gaussian PDF, respectively. As to the system SLGF (adding target frame selection upon 
the system SLG), the method presented in Section 3.3 is used to select target-frame DCC 
vectors to replace the converted DCC vectors. 

By using the three systems, we can obtain three different converted voice files for a 
source voice file. In terms of the converted voice files, we have conducted two types of 
listening tests. The first type is for timbre similarity whereas the second type is for voice 
quality. For each type of listening tests, 15 persons are invited to listen to the voice files 
and give relative scores. The 15 persons are undergraduate and graduate students. 
Among the 15 persons, 5 of them are not familiar with the research field of voice con-
version. 
 
4.1 Timbre Similarity Tests 
 

For timbre similarity tests, 5 voice files are prepared first, which are named VS (ut-
tered by the source speaker), VT (uttered by the target speaker), VXA (converted by the 
system SOG), VXB (converted by the system SLG), and VXC (converted by the system 
SLGF). Among the 5 files, VS and VT are of same content whereas VXA, VXB, VXC 
are of same content but different from VS and VT. These 5 files can be downloaded 
from the web page, http://guhy.csie.ntust.edu.tw/VoiceConv/. During listening tests with 
the method ABX, these files are played in the order ABX where A is fixed to VS, B is 
fixed to VT, and X is randomly selected from VXA, VXB, and VXC. The test method, 
ABX, was adopted by many researchers in studying voice conversion [2, 3, 6, 7, 9, 24]. 
Each time that three files, ABX, are played, the participant is requested to give a score. 
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Here, the score range is from 1 to 5. The score 5 (1) means the timbre of X is sure to be 
that of B (A), the score 4 (2) means the timbre of X is more like that of B (A), and the 
score 3 means the timbre of X cannot be judged. 

After listening tests, the scores given by the 15 persons are collected to compute 
average scores (AVG) and standard deviations (STD) for the three systems respectively. 
The results are as those values listed in Table 2. From this table, it can be seen that the 
average scores for voice conversion between different genders (i.e. from MA to FA) are 
higher than those for voice conversion between same genders (i.e. from MA to MB). In 
addition, when the average scores of the three systems are compared, it can be found that 
the average scores of the system SLGF are much better than those of the system SLG 
whereas the average scores of SLG are slightly better than those of SOG. Therefore, 
mapping with segmental GMM and target-frame selection can indeed help to improve 
the timbre similarity of the converted voices. 

Table 2. Average scores and standard deviations for timbre similarity tests. 
  SOG SLG SLGF 

MA=>MB 
AVG
(STD)

4.18 
(0.74) 

4.33 
(0.49) 

4.67 
(0.49) 

MA=>FA 
AVG
(STD)

4.53 
(0.52) 

4.80 
(0.41) 

4.93 
(0.26) 

 

4.2 Voice Quality Tests 
 

In the tests of voice quality, the three converted voice files, VXA, VXB, and VXC 
are used. These files are played in the order AX where A is fixed to VXA and X is ran-
domly selected from VXB and VXC. Each time that two files, AX, are played, the par-
ticipant is requested to give a score. Here, the score range is from 1 to 5. The score 5 (1) 
means the quality of X is much better (worse) than A, the score 4 (2) means the quality 
of X is slightly better (worse) than A, and the score 3 means the quality of X cannot be 
distinguished from that of A. 

After listening tests, the scores given by the 15 persons are collected to compute 
average scores and standard deviations for the two systems, SLG and SLGF, respectively, 
when compared with the system SOG. The results are as those values listed in Table 3. 
From Table 3, it can be found that the average scores for voice conversions from MA to 
MB (i.e. same gender) is about 0.3 better than the average scores for voice conversion 
from MA to FA. This indicates that the quality of the converted voice from different 
genders is harder to improve. In addition, when the average scores of the two systems, 
SLG and SLGF, are compared, it can be found that the scores of SLGF are both better 

Table 3. Average scores and standard deviations for voice quality tests. 
  SOG vs SLG SOG vs SLGF 

MA=>MB 
AVG
(STD)

3.73 
(0.59) 

4.33 
(0.62) 

MA=>FA 
AVG
(STD)

3.53 
(0.52) 

3.93 
(0.59) 
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than those of SLG. Therefore, the idea of cascading automatic segmental GMM selection 
with automatic frame selection can indeed help to improve the quality of the converted 
voice. 
 
4.3 Cepstral Distance and Variance Ratio 
 

There are 25 remaining parallel sentences that are not used in the training stage. 
Hence, the 25 sentences uttered by the source speaker, MA, are fed to the three systems 
to obtain their corresponding converted sentences, respectively. Then, a geometric dis-
tance of DCC is measured between each voiced frame of the converted sentences and its 
corresponding frame in the target sentences according to the saved DTW alignment data. 
Next, the measured distances are averaged across all voiced frames. As a result, the av-
erage distances obtained for the three systems are as those listed in Table 4. From this 
table, it is seen that the system SOG obtains the smallest average distances. Nevertheless, 
the results of listening tests show that the system SOG is the worst in timbre similarity 
and is worse than SLGF in voice quality. Therefore, the average cepstral distances 
measured are inconsistent with the results of the listening tests. Such a situation, i.e. in-
consistency between cepstral distance and voice quality, is also reported in several works 
by others [5, 6, 24, 25]. Therefore, another objective measure, variance ratio (VR), is 
used in [5, 6], which is consistent in general with the converted-voice quality. 

 

Table 4. Average distances for the three systems. 
 SOG SLG SLGF 

MA=>MB 0.5440 0.6312 0.6889 

MA=>FA 0.5237 0.5252 0.5951 

 

The formula of variance ratio adopted here is 

2

2

ˆ( )1
1 1 ( )

,
d

v v
d
v

V DN
NT Dv d

VR 

 
    
 

     (14) 

where V is the number of segment classes (V = 39 here), Nv is the number of voiced test 
frames belonging to the vth class, NT is the total number of voiced test frames, D is the 
dimensionality of DCC (D = 40 here), ˆ d

v  and 
d
v  are the standard deviations of the dth 

dimension for the converted and target DCC, respectively. According to Eq. (14), we 
measure the values of VR for the three systems, SOG, SLG, and SLGF, by using the 25 
parallel sentences. As a result, the measured values are listed in Table 5. From Table 5, it  

Table 5. The values of VR measured for the three systems. 
 SOG SLG SLGF 

MA=>MB 0.2223 0.2578 0.6248 
MA=>FA 0.1783 0.2058 0.5793 
Average 0.2003 0.2318 0.6021 
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can be seen that the average VR value, 0.2318, of SLG is greater than the one, 0.2003, of 
SOG, and the average VR value, 0.6021, of SLGF is much greater than the other two 
systems’ values. Therefore, the measured VR values are consistent with the perceived 
qualities of the three systems’ converted voices. 

On the other hand, to investigate why the inconsistent situation may occur, we take 
some frames of target DCC vectors and their corresponding converted DCC vectors to 
draw spectral envelope curves. Then, the spectral envelope curves of each target DCC 
vector and its two converted DCC vectors by the two systems, SLG and SLGF, are 
compared to see if something strange can be found. As a result, we find a noticeable 
phenomenon. The spectral envelopes converted by the system SLG are still over- 
smoothed frequently. This spectral over-smoothing makes the spectral envelope con-
verted by SLG closer to the spectral envelope of the target DCC and hence results in 
smaller distances be calculated when compared to the spectral envelope converted by 
SLGF. 

An example of a spectral envelope converted by SLG is taken from a source frame 
of /li/, and drawn in Fig. 4 as the light solid-lined curve. In contrast, the spectral enve-
lope converted by SLGF is obtained from a selected real target-frame, and drawn in Fig. 
4 as the dark solid-lined curve. The other curve in Fig. 4, i.e. the dash-lined curve, is the 
spectral envelope of the target frame aligned (with DTW) to the source frame. Inspecting 
the three curves in the frequency range from 5,000 to 8,000 Hz, we find that the light 
solid-lined curve almost goes between the other two curves. This explains why the dis-
tance between the converted DCC by SLG and the target DCC will be smaller than the 
distance between the converted DCC by SLGF and the target DCC. In addition, inspect-
ing the three curves in the frequency range from 2,000 to 4,000 Hz, we find that the third 
and fourth formants on the dark solid-lined curve are much sharper than the correspond-
ing formants on the light solid-lined curve. This may explain why the quality of the con-
verted voice by SLGF is perceived as better than the converted voice by SLG. 
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Fig. 4. Spectral envelopes converted by the systems SLG and SLGF for a source frame from /li/. 
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5. CONCLUSIONS 

According to the results of the listening tests, the system SLGF is the best in both 
timbre similarity and voice quality among the three systems, SOG, SLG, and SLGF. In 
addition, the measured values of VR also indicate that the converted-voice quality of 
SLGF is much better than the qualities of the other two systems. Therefore, the approach 
that combines automatic segmental-GMM selection with automatic target-frame selec-
tion can indeed help to promote the performances of the GMM based voice conversion 
mechanism. As to the cepstral distances measured, the system SOG indeed obtains the 
smallest average distance. Nevertheless, according to our observations from Fig. 4, the 
smaller average distance is obtained in terms of over-smoothed converted spectral enve-
lopes. Therefore, the system SOG (also SLG) suffers the over-smoothed converted spec-
tral envelopes, which will degrade the voice quality and timbre similarity. In the future, 
we may study to reduce the size of a speech segment from syllable final to vowel nucleus 
and ending nasal. Also, the idea of global variance may be integrated to our approach to 
further improve the quality of the converted voice. 
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