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Abstract: 
In this study, an algorithm having a nice dynamic- 

programming structure is proposed for unit selection. This 
algorithm considers the costs of pitch and duration 
transformations, and the costs of contextual and spectral 
discontinuities. Here, the voice unit, demi-syllable, is adopted. In 
the training phase, each demi-syllable unit is analyzed to obtain 
a sequence of DCC (discrete cepstral coefficient) vectors. Then, 
in the synthesis phase, the pitch and duration of a syllable can 
be adjusted. In addition, the singing voice signals are 
synthesized with HNM (harmonic plus noise model) model. To 
evaluate the performance of our unit selection algorithm, we 
have conducted two listening tests. One test is to evaluate the 
spectral fluency (continuity), and the other test is to evaluate the 
synthesized songs’ quality. The results of both tests show that 
our algorithm can improve a synthesized song’s fluency level 
and quality noticeably. 
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1. Introduction 

Under the situation, using only a very limited set of 
syllable utterances to analyze the parameters of the HNM 
signal models, we had developed a Mandarin singing voice 
synthesis method based on HNM [1]. The synthesized song 
signals are very clear, i.e. of high signal-quality. Nevertheless, 
the synthesized song when heard is felt lacking of singing 
resonance. This problem we think is due to the recorded 
utterances which are uttered in speech style. Therefore, in this 
study, we record several songs sung by a real singer and use 
these songs to analyze the required features, e.g. spectral 
envelope parameters. 

As discussed in other researchers’ works [2, 3], singing 
synthesis systems are classified to model based and 
concatenative. An example of the model based systems is 
Sinsy [4], which is based on hidden Markov model (HMM). 
Recently, we had tried the HMM based tool kit, HTS [5], for 
our recorded songs to train HMM, and then use HTS 
synthesis engine to synthesize singing voice with the trained 
HMM. However, the synthesized songs are not satisfactory in 

general. First, the pitch contours of many synthesized 
syllables are of incorrect pitch heights or strange contours. 
These may be due to pitch detection errors in analyzing the 
recorded songs. Secondly, many syllables of the synthesized 
songs are perceived as muffled. The muffled voices we think 
is due to that many frames of generated spectral coefficients 
suffer in over-smoothed spectral envelopes. 

In this study, we intend to prevent over smoothed 
spectral envelopes from being generated. Hence, we decide to 
adopt the approach of unit selection instead of HMM based 
spectral modeling. Conventionally, unit selection usually 
imply that the pitch and duration of a selected unit would be 
modified by a time-domain method, e.g. PSOLA [6]. In this 
study, however, we will modify a unit’s acoustic 
characteristics (pitch and duration) with a frequency domain 
method, actually an HNM based method [1]. Our decision is 
based on that singing expressions, e.g. vibrato and 
portamento, are more convenient to present with a frequency 
domain method. 

For the choice of unit size, we decide to take the size, 
demi-syllable. Apparently, the unit size, syllable, is too large 
because the number of different combinations of the relevant 
factors, syllable id, pitch id, duration class, and left and right 
context classes, will be very large. On the other hand, the unit 
size, diphone, is more difficult than demi-syllable to 
determine the boundary point between adjacent units. 
Therefore, we think the unit size, demi-syllable, is very 
appropriate for a syllable prominent language, e.g. Mandarin. 

Besides unit selection and signal synthesis method, 
another important issue is how to synthesize a song as natural 
as sung by a real singer. We think the most relevant factor to 
naturalness is the singing expression of vibrato. In the past, 
we had studied ANN based models for generating vibrato 
parameters [7]. Such models are very effective in generating 
natural vibrato expressions. Accordingly, in this study, we 
just focus on the issue, developing an effective unit selection 
algorithm for demi-syllables. 

2. System structure 

A singing synthesis system is built in this study. We 



 

 

implement this system in two stages, i.e. preparation and 
synthesis stages. The works done in the preparation stage is 
described in Section 2.1 whereas the processing steps for the 
synthesis stages are described in Section 2.2. 

2.1. Preparation stage 

In preparation stage, the recorded songs are segmented 
into phrases, and each phrase is labeled with syllable lyrics 
and syllable-boundary points. Then, each phrase is sliced into 
a sequence of frames, and each frame is analyzed for its pitch 
and spectral coefficients. The spectral coefficients adopted 
here are discrete cepstral coefficients (DCC) [8]. Next, each 
syllable extracted from a phrase is split into a left 
half-syllable (LHS) unit and a right half-syllable (RHS) unit. 
Such LHS and RHS units are the basic voice units adopted 
for unit selection. 

 
Corpus and labeling 

We invite a female singer to sing 44 Mandarin songs in a 
soundproof room. The sampling rate is set to 22,050 Hz. 
These songs consist of 5,882 syllables in total. After 
recording, these songs are manually segmented into phrases. 
Then, these phrases are automatically labeled with the 
software package, HTK. Since most of the boundary points 
are incorrectly labeled, we have to manually correct the 
wrongly labeled boundary points. Additionally, for each 
syllable, we add a boundary point between the initial 
consonant and the final vowel group.  

 
Pitch detection and DCC calculation 

Each frame of a syllable is analyzed to obtain its pitch 
value and DCC coefficients. For pitch detection, a method 
that combines autocorrelation and AMDF is adopted. After 
the frames of a syllable are pitch detected, the obtained pitch 
values are averaged in logarithmic scale to calculate an 
average pitch for this syllable. As to the representation of a 
frame’s spectral envelope, we use DCC coefficients. For 
analyzing DCC, we use the program modules developed in 
the previous work [9].  

 
Syllable splitting and context label 

The voice unit is demi-syllable here. Each syllable 
extracted from a recorded song is split into an LHS unit and a 
RHS unit. As to determine the splitting point, we have ever 
trained an HMM from a syllable’s frame sequence, and then 
select the frame that is occupied by the middle state of the 
HMM. Nevertheless, the selected frame may be very close to 
the beginning or ending of the nucleus vowels’ duration in 
some syllables, i.e. very nonuniform splitting. Therefore, we 
decide to directly put the splitting point to the vowel’s half 

duration for a syllable of a single nucleus vowel. For a 
syllable of several nucleus vowels, we directly put the 
splitting point to one third of the vowels’ duration. 

For Mandarin, the number of different LHS units is only 
356 whereas the number of different RHS units is as less as 
36. However, to synthesize a fluent song with spectral 
continuity, we have to consider contextual continuity. 
Therefore, we also mark each unit’s left and right contexts 
besides the current unit’s label. For example, the label tuple, 
<mai+, L(u), R(d)>, indicates that the current unit, labeled 
/mai+/, is the LHS of a syllable, /mai/, the left context is L(u) 
which means the tail phoneme of the previous syllable 
belongs to the phone class, /u/, and the right context is R(d) 
which means the leading phoneme of the next syllable 
belongs to the phone class, /d/. In contrast to /mai+/, the 
complement RHS unit would be labeled as <+ai, L(u), R(d)>. 

2.2. Synthesis stage 

For synthesis stage, the processing flow is drawn in 
Figure 1. The processing steps include (a) Input notes and 
lyrics, (b) Select demi-syllable units, (c) Generate pitch 
contours of vibrato expression, (d) Synthesize each syllable’s 
signal samples with HNM, and (e) Concatenate syllable 
signals. 

 
Figure 1. Chief processing flow for synthesis stage 

Input notes and lyrics 
The first line of a score file contains the data, song name 

and tempo. Then, each of the following lines contains the 
items, lyric syllable (e.g. /pau/), tone symbol (e.g. C4) or tone 
symbols (e.g. C4-E4) for portamento, and number of beats or 
numbers of beats (e.g. 2-2). 
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Select demi-syllable units 

In this study, we have designed a dynamic programming 
based algorithm to execute unit selection. The details of this 
algorithm will be present in Section 3. For each lyric syllable, 
an LHS unit and a RHS unit would be selected from the 
deposit. Then, the two units’ corresponding DCC files are 
concatenate to form the lyric syllable’s DCC file. 

 
Generate pitch contours 

The pitch contour of a syllable should be generated with 
vibrato expression in order for natural singing voice to be 
synthesized. Here, “vibrato” means both local vibration and 
global trend within a pitch contour. We had studied an 
effective method, based on ANN, for generating vibrato 
parameters, i.e. intonation, and vibrato extent and rate [7]. 
Therefore, the program modules developed previously is 
directly applied here to generate pitch contours. 

 
Synthesize syllable signals with HNM 

After unit selection, each lyric syllable has its 
corresponding sequence of DCC vectors. Hence, the spectral 
envelope of a frame can be derived from its DCC vector [9]. 
Next, the f0 value generated for a fame (as a point in the 
pitch contour) can be used to determine each harmonic’s 
frequency and amplitude (guided by the spectral envelope). 
According to the harmonics’ frequencies and amplitudes and 
the spectral envelope of each frame, the signal model, HNM, 
can be used to synthesize a singing syllable’s signal 
waveform. The details of HNM based signal synthesis are 
referred to the previous works [1, 9]. 

 
Concatenate syllable signals 

By concatenating the synthesized signals for a sequence 
of lyric syllables, a synthesized song can be obtained. 
Nevertheless, such concatenation is not trivial in practice. For 
the synthesized song to have correct tempo, a syllable that 
has initial consonant must be placed ahead its corresponding 
note’s start time. In more precise, we should align the vowel 
part of a syllable with the corresponding note’s start time. 
Hence, overlap and add is performed for some adjacent 
syllables’ signals. 

3. Unit selection 

The factors that affect the synthesis of a singing syllable 
include pitch, duration, LHS, RHS, and left and right context 
classes. The number of different combinations of these 
factors is very huge. Nevertheless, the number of collected 
LHS and RHS units is relatively small. Therefore, for 
practical implementation, cost functions are defined, and then 

unit selection is performed to minimize the accumulated cost 
in order for obtaining a best unit sequence. 

3.1. Unit selection algorithm 

Several types of costs are discussed in the work by M. 
Umbert, et al. [10]. Here, we adopt some of the cost types, i.e. 
transformation cost, continuity cost, and concatenation cost. 
Using these costs, we develop a dynamic programming based 
unit selection algorithm. Let SF(t, m) denote the m-th LHS 
candidate unit at time t (i.e. t-th syllable), SB(t, n) denote the 
n-th RHS candidate unit at time t, and Nm and Nn denote the 
numbers of candidate units for LHS and RHS, respectively. 
Then, the top part of our algorithm is as the two formula, 
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where B(t,m) denotes the minimum accumulated cost for the 
m-th LHS candidate at time t, and D(t,n) denotes the 
minimum accumulated cost for the n-th RHS candidate at 
time t. In addition, Ccross(X, Y) is the cost function defined 
here to calculate the cost introduced by the two cross-syllable 
units, X (a RHS unit for the predecessor syllable) and Y (a 
LHS unit for the current syllable), and Cinner(U, V) is the cost 
function defined here to calculate the cost introduced by the 
two within-syllable units, U (an LHS unit for the current 
syllable) and V (a RHS unit for the current syllable). The 
definitions for the two cost functions are given in Subsections 
3.2 and 3.3. 

3.2. Within-syllable cost function 

When an LHS unit and a RHS unit is to be connected to 
form a syllable, we think three types of costs should be 
considered, i.e. transformation cost, continuity cost, and 
concatenation cost. Here, “transformation” includes pitch and 
duration transformations to let a selected unit’s pitch and 
duration satisfy its corresponding note’s requirement. 
“continuity” means phonetic continuity between an LHS unit 
and a RHS unit to be connected whereas “concatenation” 
means spectral concatenation at the boundary between an 
LHS unit and a RHS unit. Therefore, we define the 
within-syllable cost function, Cinner(X, Y), as the formula,  
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where α, β, and γ are the weighting constants. Here, we set α 
to 0.1, β to 0.8, and γ to 0.1 empirically. 

3.3. Cross-syllable cost function 

When two adjacent syllables are to be connected, we 
think two types of costs should be considered, i.e. continuity 
cost and concatenation cost. Here, “continuity” means 
contextual continuity between a RHS unit of the predecessor 
syllable and an LHS unit of the current syllable. 
“concatenation” still means spectral concatenation at the 
boundary between a RHS unit and an LHS unit. Therefore, 
we define the cross-syllable cost function, Ccross(X, Y), as the 
formula, 
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where λ and η are the weighting constants. We set λ to 1.2 and 
η to 0.01 empirically. 

3.4. Pitch transformation cost 

The pitch transformation cost, Ctran-p(SF(t, m), SB(t, n)), 
used in Formula (3) is calculated as the formula, 
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where Note(t) denote the note corresponding to the t-th 
syllable, and the function, PtchCost(X, Y) is used to calculate 
the pitch-difference cost between X and Y. Let PD(X, Y) 
denotes the pitch difference, in semitones, between X and Y. 
Then, we define the function, PtchCost(X, Y), as the formula, 
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The idea of Formula (6) is to let the pitch-difference cost 
grow exponentially in order to prevent a unit of large pitch 
difference from being selected. We think pitch difference is 
correlated with the difference in formant frequencies. 

3.5. Duration transformation cost 

The duration transformation cost, Ctran-d(SF(t, m), SB(t, 
n)), used in Formula (3) is calculated as the formula,  
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where DurPlan(t,0) denotes the planned duration, in frames, 
for the LHS unit of the t-th syllable, DurPlan(t,1) denotes the 
planned duration for the RHS unit of the t-th syllable, and 
Dur(X) denotes the actual duration, in frames, of the 
candidate unit, X. 

3.6. Concatenation cost 

The concatenation cost, Ccon(X, Y), used in both Formula 
(3) and (4) is calculated as the formula,  
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where Last(X) denotes the last frame of X, Next(X) denotes 
the next to last frame of X, Frst(Y) and Scnd(Y) denote the 
first and second frames of Y respectively, and dist(x, y) 
denotes the geometric distance between the two DCC vectors, 
x and y.  

3.7. Continuity cost 

Let the label tuple for the RHS unit, SB(t-1, n), be <Uc, 
Up, Un>, the label tuple for the LHS unit, SF(t, m), be <Vc, 
Vp, Vn>, and ClssNo(x) denote the class number of x. Then, 
the continuity cost, Ccontc(SB(t-1, n), SF(t, m)), used in 
Formula (4) is calculated as the formula, 
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4. Perceptual evaluation 

To evaluate the unit selection algorithm proposed, we 
have conducted two listening tests. The first test is to 
compare the fluency levels of the synthesized songs by our 
unit selection algorithm but under two different criteria. The 
second test is to measure the MOS scores of the synthesized 
songs’ qualities. Here, we invite 26 persons to participate the 
two listening tests. Among the participants, only 6 of them 
are familiar with the research field of speech processing. 

Singing fluency we think is majorly affected by spectral 
continuities around the boundaries of adjacent units. For the 
test of fluency level, one faster-tempo song and one 
slower-tempo song are synthesized under two different 
criteria respectively. One of the criteria is as specified in 
Formula (1) and (2), i.e. cost minimized dynamic 
programming (DP). By contrast, the other criterion is to 



 

 

replace the minimization in Formula (1) and (2) with 
maximization, i.e. cost maximized DP. For each of the two 
songs, two synthesized song versions under different criteria 
are played to each of the participants, and each participant 
gives a score to indicate which version is more fluent. In 
details, the score, -2 (2), would be given if the former version 
is definitely more (less) fluent than the latter. The score, -1 
(1), would be given if the former version is slightly fluent 
(influent) than the latter. Otherwise, the score, 0, is given if 
the fluency level cannot be distinguished. After listening test, 
the scores given by the 26 participants are arranged and 
averaged. As a result, we obtain the average (AVG) scores 
and standard deviations (STD) listed in Table 1. According to 
the average scores in Table 1, it is apparently that our unit 
selection algorithm (cost minimized DP) can indeed select 
better sequence of demi-syllable units to have synthesized 
songs to be more fluent. We think the average score would 
become better if most of the participants are familiar with 
speech processing and do not give conservative scores. 

TABLE 1.  AVERAGE SCORES FOR FLUENCY LEVEL 

Song AVG STD 
A (slower tempo) 1.154 1.347 
B (faster tempo) 0.923 1.093 

 
The second listening test is to evaluate the MOS scores 

of the synthesized songs’ qualities (considering both fluency 
and naturalness). The two songs used in the first listening test 
are also used here. For each of the two songs, the song 
version synthesized under cost maximized DP is taken as the 
reference for the MOS score of one point. By contrast, the 
song version recorded from a real singer is taken as the 
reference for the MOS score of five points. Then, the song 
version synthesized under cost minimized DP is used as the 
test song and a participant is requested to give a score to 
indicate the quality of this synthesized song. After listening 
test, the scores given by the 26 participants are collected and 
averaged. As a result, we obtain the average scores and 
standard deviations listed in Table 2. According to the 

TABLE 2.  AVERAGE MOS SCORES FOR SONG QUALITY 

Song AVG STD 
A (slower tempo) 3.577 0.945 
B (faster tempo) 3.192 1.234 

 
average scores in Table 2, it can be seen that out unit 
selection algorithm (cost minimized DP) can improve the 
synthesized songs’ quality from 1 point to around 3.38 points. 
Therefore, our unit selection algorithm is effective in 
improving the qualities of the synthesized songs. In addition, 
the improving in song quality is more noticeable for a 

synthesized song of slower tempo as shown by the average 
scores, 3.577 vs. 3.192. 

4. Conclusions 

In this study, we propose a DP based unit selection 
algorithm for singing voice synthesis. The formula for this 
algorithm are derived in a top-down structure, and hence we 
think such formula are noticeably nice. The voice unit 
adopted here is demi-syllable. Such unit, demi-syllable, is 
intend to overcome the situation that only a limited quantity 
of training-songs are available. For splitting a syllable into 
two demi-syllable units, we have studied a heuristic method 
which is shown to be workable according to the results of the 
listening tests. 

To evaluate the unit selection algorithm proposed, we 
have conducted two listening tests for spectral fluency and 
song quality, respectively. In the test of spectral fluency, our 
method (cost minimized DP) obtains the average score, 1.04, 
which means the spectral discontinuities (occurring in some 
boundaries of adjacent units) can be significantly reduced. In 
the test of song quality, our method obtains the average MOS 
score, 3.38, which indicates the qualities of the songs 
synthesized by our method can be notably improved. 
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