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ABSTRACT

    In this paper, an approach to compress Chinese text is proposed. This approach first extends
the alphabet to include those Chinese characters in Big-5 code. Then, an adaptive Markov model
is used to model the contextual dependency, and arithmetic coding is used to encode the data
more compactly. In the case of large alphabet size, a practical implementation method for
adaptive Markov model is studied, and a data structure for fast arithmetic coding is proposed.
Furthermore, to demonstrate its credibility, this approach has been programmed into a ready-to-
use software package.
    A series of experiments have been conducted. The two example texts used are CX1 (from
Chinese textbooks of primary school) and CX2 (from newspaper editorials). The experiments
show that the compression ratios (output file length divided by input file length) obtained from
our approach to be 42.3% and 48.4% for CX1 and CX2 respectively, which are considerably
better than 52.8% and 60.6%, from the popular software package ARJ, and 53.0% and 60.8%
from the package PKZIP. And for shorter files, our approach is still capable of obtaining a much
improved compression ratios.

Keywords :  data compression,  arithmetic coding,  Markov model,  Chinese text

1.  Introduction

    The purposes of data compression are to save storage space, to reduce transmission time,
and/or to protect secret information from non-authorized access. Since different types of data
have very different characteristics, it cannot be expected that a certain data compression
approach would always work to its highest efficiency. For example, text data compression
requires that the restored data are the exact duplicate of the original, i.e. distortion free. However,
some slight distortions are tolerable for the restored data of speech, image, or graphics as long as
the information carried are not lost. In this paper, the pertinent data type is Chinese text, and
compression efficiency is measured in terms of compression ratio, i.e. the size of the compressed
data file divided by the size of the original data file.
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    For Chinese text compression, a few coding schemes have been proposed [1,2,3]. They
have either been studied in simulation (have no practical application) or found to be lacking in
compression efficiency. In addition, there are some popular and commercially available software
packages (e.g. PKZIP and ARJ) that can be used to compress Chinese text to obtain certain space
saving. However, the obtained compression ratios can be lowered further if the knowledge about
Chinese text is applied. It is certain that these general-purpose compression packages have not
take into account the arrangement of the code (i.e. Big-5 code commonly used in our nation)
used in representing Chinese characters. In Big-5 code, each character is represented by two
bytes. The first byte has a value from 161 to 254, while the second byte has a value from either
64 to 126 or 161 to 254. By taking such code arrangement and other factors into accounts, the
approach proposed here can further lower the compression ratios by about 10%. Actually, this
approach has been verified by writing both the compressor and expander (restore the compressed
data file to the original data file) programs as ready-to-use software packages. Therefore, our
approach is more believable than those approaches studied in simulation with impractical
assumptions. Also, the compressor and expander programs developed can be used to process
Chinese text file. The processing speed is more than 6K bytes per second on our machine (486-
33 PC) while the basic requirement of main memory size is only 400K bytes.

    A statistical data compressor (e.g. the one developed here) can be considered as comprised
of two components, i.e. the model and the encoder [4]. The function of the model component is
to provide a most likely probability distribution of the symbols in the alphabet. If the probability
distribution is more accurately estimated, the encoder component would assign a more
appropriate code to each symbol and thus obtain a lower compression ratio. According to the
manner of estimating probability distribution, a model can be classified as adaptive, semi-
adaptive, or static [4]. For an adaptive model, before encoding an input character, the probability
distribution is dynamically adjusted to the characters seen so far. For a semi-adaptive model, the
entire sequence of characters is inspected beforehand to estimate a single probability distribution,
and then this distribution is provided to the encoder to encode all of the characters. For a static
model, the probability distribution is always fixed regardless the characteristics of the text file
being processed. In this paper, the adopted model, i.e. adaptive Markov model, is obviously an
adaptive model.

    The encoder component in a statistical compressor performs the main function of data
compression. In each processing cycle, it gets a character from the input, encodes this character
according to the probability distribution provided by the model component, and sends the
compressed data bits to the output. There are a few techniques available for the implementation
of the encoder. The earliest and best known one is Huffman coding [5,6] which can also be used
with adaptive models [7]. However, Huffman coding only performs optimally if all the symbols'
probabilities are integral power of 1/2, which is not normally the case in practice. In the late
1970s, the technique of arithmetic coding was discovered [4,6,8,9]. This is a breakthrough as
arithmetic coding is free of the restriction of Huffman coding, i.e. each character must be
encoded in integral number of bits. Therefore, this technique was adopted in this paper. In
addition to arithmetic coding, another breakthrough is the discovery of Ziv-Lempel coding [4,6]
that does not separate the model component from the coding component explicitly.
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    In the following section, the developed compressor and expander would be introduced in
block diagrams. Then, in Section 3, the detail of adaptive Markov modeling is described. And
the problems in practical implementation are discussed and resolved. In Section 4, the idea of
arithmetic coding is reviewed briefly, and a data structure to accelerate the coding process is
proposed. A series of experiments have been conducted, which would be described and
discussed in Section 5. Finally, a concluding remark is given in Section 6.

2.  Block Diagram of the Compressor and Expander

    The block diagram of the developed compressor and expander programs is shown in Fig. 1.
It can be seen from the diagram that the approach proposed is to use an adaptive Markov model
_____
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Fig. 1  The block diagram of the compressor and expander.
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for the model component, apply the technique of arithmetic coding to the coder components
(encoder and decoder), adopt an alphabet consisting of meaningful linguistic symbols (e.g.
Chinese characters and English alphabet) instead of meaningless storage symbols (e.g. a byte's
256 patterns), and use the "Map#" blocks to convert between a symbol's different representations.
At first glance, it may seem easy to put these ideas together. In reality, there are a few
implementation problems which must be resolved for the approach to be practical. The
implementation problems would be discussed in the following sections.

    In Fig. 1, S = S1, S2, ..., SL , represents the original text data (to be compressed or expanded
to) as a sequence of bytes in memory. The block Map0 in the compressor functions as a lexical
analyzer to scan and segment S into tokens according to the alphabet adopted. A token (like a
random variable) can appear to be any single symbol of the alphabet as long as it is found in the
prefix of S. For each token found, Map0 also translates it into an integer before outputting it.
This integer is the order number of the token's instance symbol in the alphabet. Map0 is required
because the alphabet adopted include both the ASCII and Chinese characters, and a Chinese
character is represented in two bytes, which needs to be distinguished from the ASCII characters.
To be precise, the alphabet is consisted of 256 ASCII characters, 471 graphical characters in Big-
5 code, 5,401 commonly-used and 7,650 next-frequently-used Chinese characters in Big-5 code,
and the pseudo control character called end_of_coding (automatically inserted as the last token
by the compressor to signal the expander when to terminate processing).
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    In Fig. 1, X=X1,X2, ..., XM represents a sequence of integers as the output of Map0. For
convenience of description, these integers would not be distinguished from the symbols they
represent. That is, an integer u representing the u'th symbol of the alphabet will be referred to as
the symbol u, and an integer token Xi will be referred to as the token Xi. In Fig. 1, the symbol Z-
1 represents a unit delay buffer to prevent the current token to be encoded or just being decoded
from being used by the model block. The sequence, Y=Y1,Y2,...,YM , represents the compressed
data in a bit string format. At the rightmost position, Map1 performs the inverse function of
Map0.

    In Fig. 1, the two adaptive Markov models in the compressor and the expander provide the
same probability distribution independently yet synchronously, i.e. no parameters about
probability distribution needs to be transmitted from the compressor to the expander (this is
important when the size of the alphabet is large) and the probability distribution is dynamically
adjusted using the same adaptation mechanism after each token is processed. The detail of
Markov modeling [5,10] and the adaptation mechanism would be described in Section 3.

    The blocks not mentioned so far in Fig. 1 are the encoder and decoder blocks. According to
the probability distribution provided by the adaptive Markov model, the encoder encodes the
input character into compressed data while the decoder decodes the compressed data into the
original character. The technique used in the encoder and decoder is arithmetic coding. Since
arithmetic coding is not new and source program for small-alphabet arithmetic coding is
available in textbook [6] and tutorial paper [9], we would not describe the implementation details
of arithmetic coding. However, in Section 4, the idea of arithmetic coding is still described
briefly, and the implementation method proposed for large-alphabet arithmetic coding is
described in detail. Note that a time-efficient implementation method for small-alphabet
arithmetic coding may become very slow when applied directly to large-alphabet arithmetic
coding.

3.  Adaptive Markov Modeling and Implementation Considerations

    Note that the elements of the sequence X in Fig. 1 are processed (encoded or decoded) in
serial. When Xi is to be processed, only the elements from X1 to Xi-1 have already been
processed and are available for estimating the probability distribution for processing Xi
(Consider this situation from the expander's view). In general, this probability distribution can be
made to depend on all the tokens processed before and their order, i.e. let it be

Ps(Xi =v) ≡ P(Xi =v | X1=u1, X2=u2, ..., Xi-1=u i-1) ,
v ∈  {1, 2, 3, ..., size_of_alphabet} , (1)

where Ps(Xi = v) is the surface probability (coined here) with the underlying condition concealed,
and P(Xi = v | X1=u1, X2=u2, ..., Xi-1=ui-1) is the conditional probability that Xi would have a
value of v when the instantiation of X1,X2,...,Xi-1 is u1,u2,...,ui-1. However, in practice, the value
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of the probability, P(Xi = v | X1=u1, X2=u2, ..., Xi-1=ui-1), cannot be estimated directly because
the instantiation of X1, X2, ..., Xi just appeared. Therefore, an approximate estimation method
must be used.

    To estimate the conditional probability practically in equation (1), the technique of Markov
modeling is thus adopted. In Markov modeling [5,10], this conditional probability is first
assumed to have the Markovian property, i.e. let

P(Xi | X1,X2,...,Xi-1 ) = P(Xi | Xi-1) ,  for the first order case, (2)
or

P(Xi | X1,X2,...,Xi-1 ) = P(Xi) ,  for the zero order case (3)

In equation(2), Xi is assumed to depend on only the last processed token Xi-1, but not the other
tokens X1,X2,...,Xi-2. In equation (3), Xi is assumed to be independent of all the previous tokens.
In addition, in Markov modeling, the conditional probability is assumed to have the stationary
property, i.e. let

P(Xi =v | Xi-1=u) = P(Xi-1=v | Xi-2 =u) = ... = P(X2=v | X1=u),  for the first order case,(4)
or

P(Xi=v) = P(Xi-1=v) = ... = P(X1=v) ,  for the zero order case (5)

In equation (4) and (5), the probability distribution is not changed with the token index or time.
However, for adaptive text compression, the assumption of stationary should not be made
because the probability distribution will be adjusted dynamically while the tokens are being
compressed. Such re-estimations are needed because initially the probability distribution is set as
uniform, which needs to be corrected, and the local characteristics of the input text may be very
uneven in different positions of the text.

    In this paper, after token Xi is processed, the probability distribution is readjusted in
accordance to the following formula,

Nuv( i ) = Nuv( i-1) + 1 ,  if  Xi-1 = u and Xi = v ,
Nuv( i ) = Nuv( i-1) ,  otherwise,          ( Nuv(0) = 0 ), (6)

Nu( i ) = Nu( i-1) + 1 ,  if  Xi = u ,
Nu( i ) = Nu( i-1) ,  otherwise,             ( Nu(0) = 0 ), (7)

N( i ) = N( i-1) + d ,                            ( N(0) = size_of_alphabet ), (8)

P(Xi+1 = v | Xi = u) = Nuv( i ) / Nu( i ) , (9)

P(Xi+1 = u) = ( Nu( i ) * d + 1) / N( i ) , (10)
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In the formula above, Nuv( i ) counts the number of times that the symbol v is found to
immediately follow the symbol u in the instantiation of X1,X2, ...,Xi. Nu( i ) is the occurrence
count of the symbol u in the instantiation of X1, X2, ...,Xi. N( i ) represents the total count of all
Nu( i ) across different u before N( i ) is multiplied by d and increased by the initial value. Based
on these counts, the probability distribution to process token Xi+1 is estimated according to
equations (9) or (10), depending on the order of the adopted Markov model. In equations (8) and
(10), the increment constant d usually is set to be larger than one (e.g. 50) to accelerate the
adaptation process and to decrease the effect of the alphabet's size for zero order Markov model.
For example, if the alphabet's size is 10,000, the value of d is 1, and the input text is consisted of
10,000 repetitions of a particular symbol u, then according to equation (10) after all the input
characters are processed the value of P(u) is only 0.5 .

    For Markov model with order one, a serious problem is that Nuv( i ) would be zero for most
of the (u, v) combinations due to the nature of adaptive processing and the large alphabet size,
e.g. there would be 108 different combinations if the size of the alphabet is 10,000. This is the
called zero-frequency problem [6,11,12,13]. In addition to the zero-frequency problem, the
storage of the counts Nuv( i ) is another problem that will be discussed in section 4. Because of
the zero-frequency problem, equation (9) cannot be used directly for Markov model of order one.
Otherwise, those (u, v) combinations with Nuv( i ) = 0 would result in infinite entropy [5]. To
resolve this problem, a portion of probability called the escape probability must be allocated to
those (u, v) pairs not seen so far. To determine how large the escape probability should be set, a
few estimation methods [12,13] have been proposed. The method adopted in this paper is
proposed by Turing [11,12], which is an approximation to the Poisson process method [13]. In
detail, if Xi = u, the escape probability is estimated as

Pe ≡ the escape probability for processing Xi+1  =  Mu( i )  /  Nu( i ) ,  (11)

where Mu( i ) is the number of those symbol v with Nuv( i ) = 1, i.e. the number of different (u, v)
pairs that have occurred only once in the instantiation of  X1,X2,...,Xi. In equation (11), the
parameter Mu( i ) may be zero or equal to Nu( i-1) in adaptive text compression, which is still a
serious problems. Therefore, a slight modification is required, and a typical one proposed by
Witten [13] and adopted here is

Pe  =  (1 + Mu( i )) / (2 + Nu( i )) ,  (12)

When the escape probability is determined, it can be allocated, to those symbols v not following
u in the instantiation of X1,X2,...,Xi, in proportion to their zero order probabilities P(Xi+1=v)
defined in equation (10). Now, the more practical formula for the first order probability
P(Xi+1=v | Xi=u) can be given as

P(Xi+1=v | Xi=u)  =  (1-Pe) ( Nuv( i ) / Nu( i ) ) ,    if  Nuv( i ) > 0, (13)

P(Xi+1=v | Xi=u)  =  Pe ⋅ ( P(Xi+1=v) / Pt ),    if  Nuv( i )=0, (14)
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where Pt is the normalization term and is defined as the total probability of those symbols v with
Nuv( i ) = 0. To save computation time, Pt can be evaluated as

Pt  =  1 -  Σ{v | Nuv( i ) ≠ 0} P(Xi+1 = v) (15)

4.  Data Structure for Fast Arithmetic Coding

    First, the idea of arithmetic coding [6,8,9] is briefly reviewed. In arithmetic coding, an input
text of any length is always represented by a half-open interval [a, b) , 0<a<b<1, as its encoded
output. This interval is obtained from the initial interval [0, 1) by a sequence of narrowing
operations. Each narrowing operation is performed to encode a token. For example, let [ai, bi) be
the interval after token Xi is encoded, Xi+1 be of the value u, and the cumulated probability
interval for u be [cu( i ), eu( i ) )  (so eu( i ) - cu( i ) is u's occurrence probability). Then, the
narrowed interval after token Xi+1 is encoded is defined as

[ai+1, bi+1) =  [ai + ri*cu( i ),   ai + ri*eu( i ) ) ,  (16)

where ri = bi - ai is the range of the previous interval. According to this definition, it can be seen
that successive tokens when encoded will reduce the range of the interval, and a symbol of
greater occurrence probability will have less effect on the reduction than an unlikely symbol.
Also, as the index i grows, the interval would become very narrow and the representations of ai
and bi would have the same bit pattern in the most significant part. In practice, these common
bits need not be kept, i.e. the most significant bit would be immediately shifted out and sent to
the output each time it is found to have the same value in both the representations for ai and bi.
Therefore, the complete representations of ai and bi have not been kept but the least significant
part with different bit patterns.

4.1  IPR Search Tree

    According to the formula in equation (16), to encode a token, the cumulative probabilities
of this token's instance symbol and its successor symbol are what actually needed. These
cumulative probabilities can be computed, when needed, from the frequency counts of the
symbols if the concerned symbol group must allow new elements be added dynamically and is
small in size, e.g. the group of the symbols v with Nuv( i ) > 0 in equation (13). On the other
hand, when the size of a concerned symbol group is large, it is better to keep those symbols'
frequency counts in the form of cumulated frequency counts. For example, the group of the
symbols v, with Nuv( i ) = 0 in equation (14), is usually very large in size (more than 10,000
symbols). In this paper, in order to reduce the large memory space required to maintain a
separate and large symbol group for each different symbol u of equation (14), an implementation
simplification is needed, i.e. only one symbol group consisted of all the alphabet symbols is used
as the common symbol group for all different symbol u of equation (14) though some symbol v
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may have non-zero Nuv( i ) count. Then, the normalization term Pt in equation (14) would have
a value of one and can be deleted. Note that, the representation in cumulated frequency counts
does not solve the problem completely. After a symbol u is encoded, u's occurrence frequency
will be updated according to equation (7) in adaptive text compression, which means that all the
cumulated frequencies of the symbols behind u will be updated. To overcome this problem, a
type of tree structure called in-path-recording (IPR) search tree is proposed, which is designed
independently and is different from the one proposed by Bell, et al. [6]. Note that we have
provided a self-adjusting mechanism while they didn't.

    An example of IPR search trees is shown in Fig. 2. In Fig. 2, each node represents a symbol
__
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Fig. 2  An example of IPR search trees.

(indicated in the circle) of the alphabet (of six symbols here) except the leftmost one is used to
compute the totally cumulated frequency. The cumulated frequencies of the symbols are shown
below the nodes and are underlined. And the nodes are adequately linked by the left(k) and
right(k) (the left and right son pointers) fields of each node k to form a balanced search tree. In
addition, there are two more fields for each node k, i.e. cum_up(k) (used to compute the
cumulated frequencies of the nodes in the left subtree), and cum_self(k) (used to compute the
cumulated frequency of node k).

    For such an IPR search tree to be useful in arithmetic coding, two operations, find_cum(k)
and update(k, d), need to be performed efficiently, which are find_cum(k), the function to find
the cumulated frequency of symbol k, and update(k, d), the function to increase, by the quantity
of d, the cumulated frequencies of all the symbols less than k. The function find_cum(k) can be
explained by using the example in Fig. 2. Suppose the cumulated frequency of symbol 1 would
be found and saved in a temporary variable w. The value of w is first cleared to zero and the path
from the root node (i.e. node 3) to node 1 is traversed. When the left pointer of a node k is
followed to traverse this path, the value in the cum_up(k) field is added to w but not added if its
right pointer is followed. Finally, when the destination node is reached, i.e. node 1, the value in
the field cum_self(1) is added to w. Therefore, the value of w is 5 (cum_up(3) + cum_self(1) = 4
+ 1). By using the function find_cum(k), the cumulated probability interval needed in equation
(16) can be computed as
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[cu( i ), eu( i ) ) = [find_cum(u) / find_cum(0),  find_cum(u-1) / find_cum(0) ) (17)

Now, the function update(k, d) is illustrated as follows. Suppose the occurrence frequency of
node 4 in Fig. 2 is to be increased by 2. The path from the root node to node 4 is then traversed.
When a node k's right pointer is followed to traverse this path, both the fields cum_up(k) and
cum_self(k) are increased by 2 respectively, but not changed when its left pointer is followed.
Thus, cum_up(3) and cum_self(3) are changed to 6 and 5 respectively while cum_up(5) and
cum_self(5) remain unchanged. Finally, when the destination node is reached, i.e. node 4, only
the field cum_up(4) is increased by 2 but not the field cum_self(4). Thus, cum_up(4) is changed
to 3 while cum_self(4) remains. After this update operation is performed, the cumulated
frequencies of the nodes, 0 through 6, would be 8, 7, 6, 5, 2, 1, and 0 respectively. These values
can be used to verify the functions find_cum(k) and update(k, d). According to the explanation
above, it can be seen that these two functions can be performed in logarithmic time if the tree is
balanced. Therefore, for a balanced IPR search tree, the time-expensive operation of frequency
count updating in large-alphabet arithmetic coding is not a severe problem.

4.2  Self-Adjusting Tree and List

    In addition, note that the symbols of the alphabet are not uniformly referenced, i.e. some are
very frequently referenced while some are hardly referenced. We can take advantage of this
phenomenon to further reduce the running time by dynamically adjusting the structure of the IPR
search tree to move the frequently referenced nodes toward the root to reduce its path length.
One self-adjusting mechanism that can be adopted is the one used in splay trees [14,15].
However, in this paper, only a simple rotation is performed at the node whose occurrence
frequency has just been updated. A simple rotation can be a right or left rotation as shown in Fig.
3. In Fig. 3, the node b, on the left side, is the node to be rotated by a right rotation while the
node d, on the right side, is the node to be rotated by a left rotation. |k| represents the occurrence
frequency of a node k. The fields Cum_Up(.) and Cum_Self(.) represent the updated versions of
cum_up(.) and cum_self(.) for a right rotation, or the original versions for a left rotation. Note
that after a simple rotation is performed, only the fields cum_up(.) and cum_self(.) in the node
rotated or its parent need to be adjusted to maintain consistency. The required adjustment
formula are as listed in Fig. 3. For example, after the occurrence frequency of node b on the left
side of Fig. 3 is updated, a right rotation will then be performed to make node b as the father of
node d, and the two relevant fields in node b will be adjusted by the formula

Cum_Up(b)  =  cum_up(b) + cum_up(d) (18)

Cum_Self(b)  =  cum_self(b) + cum_up(d)
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Fig. 3  Example left and right rotations, and the adjusting formula.
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left  rotation

cum_up(b)=|b|+|c|
=Cum_Up(b)-Cum_Up(d)

cum_self(b)=|c|
=Cum_Self(b)-Cum_Up(d)

    The self-adjusting IPR search tree described above is used to compute the cumulated
probability of a symbol v with Nuv( i ) = 0 in equation (14). To compute the cumulated
probability of a symbol v with Nuv( i ) > 0 in equation (13), the data structure of self-adjusting
list [9,16] is adopted in this paper. That is, for each symbol u, there is a linked list constructed to
store those symbols v, found to follow u, and their occurrence frequencies. Here, "self-adjusting"
means that the symbol v, when referenced, will be moved to the first position of the list to
accelerate the latter references to v. In addition to node reference, strategy about node deletion
should also be considered because the main memory is finite and the allocated nodes have to be
freed and reused for those newly found (u, v) pairs when the input text is long. To resolve the
problem of insufficient memory, the LRU (Least Recently Used) criterion discussed in the
"operating system" textbooks is also adopted. In practice, the free nodes and the allocated nodes
are linked (by a dedicated field) to form a queue. When a node is referenced, it is move to the
rear end of the queue immediately, and gotten from the front end if freed (if already allocated)
when it is needed to keep a new symbol v in the linked list of a symbol u.

5.  Text Compression Experiments

    A series of experiments had been conducted to study the compression efficiency of the
approach proposed and the factors that may lead to improvements. This approach is also
compared to some popular and commercially developed software packages such as ARJ and
PKZIP. Note that all the experiments are conducted physically (not in simulation), i.e. the
programs for different processing conditions in our approach are all written as ready-to-use
software packages. In these experiments, a 486-33 personal computer is employed as the
platform. The main memory available for the programs is about 600K bytes under the ordinary
operating mode of the hardware. Borland C++ 3.1 is used as the programming environment.
Here, the two Chinese text files used in the experiments are called CX1 and CX2. CX1 is
collected from the twelve Chinese textbooks of primary school and its size is 231,737 bytes.
CX2 is collect from the editorials of evening newspapers. The editorials were published in a
period of about six months, and consisted of 115 articles (each of length between 1K to 2.3K
bytes). The size of CX2 is 170,127 bytes.
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5.1  Experiments for the Approach Proposed

    To study the factors that may reduce the compression ratio or running time in our approach,
four conditions are set and tested in the experiments. These four conditions are named as SM0-,
LM0-, LM0^, and LM1^. For these names, "S" indicates the limited alphabet consisted of the
256 ASCII characters plus the pseudo character end_of_coding, and "L" indicates the extended
alphabet consisted of the 256 ASCII characters, the 13,522 Big-5 characters, and the pseudo
character end_of_coding. "M0" represents the zero order Markov model while "M1" represents
the first order Markov model. In addition, "-" indicates that only linear lists are used, while "^"
indicates that an IPR search tree, instead of a linear list, is used to store the cumulated counts
of  the counters Nu(.) for different u.

    For these four conditions, the corresponding programs had been written and then tested by
using the texts CX1 and CX2. The results of these experiments are shown in Table I. In Table
I(a), aa

Table I  Compression ratios and running time in different conditions

Table I(a)  Compression ratios in different conditions

SM0- LM0- LM0^ LM1^
CX1 78.5% 57.0% 57.0% 42.3%
CX2 81.8% 60.1% 60.1% 48.4%

Table I(b)  Time spent in different conditions

SM0- LM0- LM0^ LM1^
CX1 14.2s,  24.0s 49.5s,  78.0s 14.3s,  18.6s 35.2s,  33.2s
CX2 10.8s,  18.9s 43.3s,  67.5s 10.5s,  13.7s 25.8s,  24.2s

the compression ratios for different combinations are listed. According to this table, the best
compression ratios are 42.1% for CX1 and 48.7% for CX2 in the last column. Therefore, the
condition LM1^ (extended-alphabet Markov model of order one and using an IPR search tree) is
the best of the four conditions and is suggested to be adopted to obtain the lowest compression
ratio. For the difference between 48.7% and 42.1%, note the fact that the themes of the articles in
CX2 have more variation than those in CX1 and the model needs to change its statistics more
frequently. Another fact is that Chinese characters' occurrence is under control (for teaching
purpose) in CX1 while Chinese characters or words are more freely used in CX2. Next, from the
first and second columns of Table I(a), it can be found that for both CX1 and CX2, the
compression ratios can be lowered (about 20%) when the alphabet is changed from the limited
one to the extended one. This indicates that the alphabet should be adequately constructed to let
its symbols match the lexical units of the text to be compressed, and that a storage-unit oriented
alphabet (though easier to implement) may result in a considerable loss of compression
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efficiency. In addition, from the third and last columns of Table I(a), it can be found that for both
CX1 and CX2, the compression ratios are reduced further (about 12%) when the first order
Markov model is used instead of the zero order Markov model. This shows the existence of
correlation between adjacent characters in Chinese text, which can be utilized in text
compression and other applications [10].

    For processing speed or running time, the results of the experiments are listed in Table I(b).
In this table, the number at the left of a cell is the time (in seconds) used by the compressor while
the number at the right is the time used by the expander. From this table, it can be found that the
time spent would grow rapidly if the alphabet is entended considerably while the data structure
of a linear list remains the same. This can be seen from the first and second columns of Table
I(b). Therefore, a better data structure should be adopted when the alphabet is large. In the third
column of Table I(b), the data structure of an IPR search tree is used instead, and the time spent
is reduced drastically when compared to the second column. In the last column, the time spent
doesn't grow too much for the more complicated model. This is also due to the use of an IPR
search tree. Actually, the programs for the condition, LM1^, can process more than 6K bytes of
text per second. In other words, the increased running time are tolerable with respect to the large
reduction in compression ratios. In addition, it can be found from Table I(b) that the difference of
the time spent by the compressor and expander would be smaller if an IPR search tree is adopted
instead of a linear list.

5.2  Comparison with Two Compression Packages

    Here, the compression ratios obtained from our approach (in the condition LM1^) are
compared with those from the popular software packages ARJ and PKZIP. By using CX1 and
CX2 as the example texts, the results obtained from the experiments are listed in Table II. In
aaaaa

Table II  Compression ratios for different combinations

LM1^ ARJ PKZIP
CX1(231,737 bytes) 42.3% 52.8% 53.0%
CX2(170,127 bytes) 48.4% 60.6% 60.8%

Table II, it is obvious that our approach not only obtains the lower compression ratios but
reduces these ratios by more than 10% (52.8-42.3=10.5 and 60.6-48.4=12.2). Furthermore, our
approach is steadily better than the packages ARJ and PKZIP regardless of the length of the text
file to be processed. This can be seen from Fig. 4, which plots the compression ratios against the
positions in the text files, CX1 and CX2. The curves for the package PKZIP are not plotted
because its aaaa
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Fig. 4  Compression ratios plotted against positions in the input text.

compression ratios are nearly identical to those obtained from the package ARJ at all positions
measured. According to the two pairs of nearly paralleled curves, in Fig. 4, for CX1 and CX2, it
is obvious that the compression ratios of our approach are always lower (by about 10%) than
those ratios from the packages ARJ and PKZIP. We think the key factor for the better
compression efficiency of our approach is the construction of the alphabet. It is certain that the
general-purpose compression packages ARJ and PKZIP don't know that Chinese characters are
represented in Big-5 code and Big-5 code is a special double-byte code. Therefore, only by
extending the alphabet to include the Big-5 Chinese characters, the compression ratios obtained
under the condition LM0- and LM0^ in Table I(a) are comparable to those ratios obtained from
ARJ and PKZIP.

6.  Concluding Remark

    In this paper, an approach for Chinese text compression is proposed. By using this approach,
compression ratio of less than 50% is achievable. According to the experiments conducted, the
ratios obtained are considerably (about 10%) lower than those from the popular data
compression packages. The compression efficiency from our approach is due to the adoption of
large alphabet to include the large amount of Chinese characters, the use of adaptive first-order
Markov model to dynamically track the contextual dependency, and the application of arithmetic
coding to encode the data more compactly. In addition, by adopting the LRU criterion, the self-
organizing strategy, and the proposed IPR search tree, our approach had been implemented with
sufficient efficiency in time and space to make itself practical. If the requirements for time and
space efficiencie are relaxed, it is certain that first order Markov model and some other types of
models (e.g. a hybrid model using both the statistical and grammatical information) can obtain
even higher compression efficiency.
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